

Innovation and Creativity

A Low-Latency Full-Duplex Audio over IP Streamer

Asbjørn Sæbø and U. Peter Svensson Centre for Quantifiable Quality of Service in Communication Systems (Q2S) LAC2006, 2006-04-27

What is LDAS?

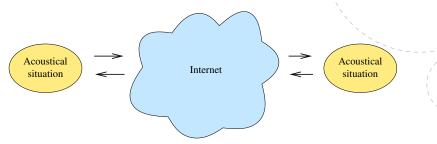
- A Low Delay Audio Streamer in software
 - basically an audio to UDP/IP adapter
 - developed for Linux, using the ALSA sound system
 - currently at prototype stage
- A research tool
 - distributed multimedia interaction
 - · perceived quality of service
- Aimed at demanding applications
 - low latency, high quality multichannel audio

Overview of the presentation

- Background and motivation
- Requirements and specification
- Main points of LDAS implementation
- Latency and latency measurements
- Conclusion

4

HQ28


Q2S: Audio over IP Networks

- Quality beyond voice over IP:
 - Lower latency
 - Higher audio quality ⇒ higher bit rates
 - Multiple channels ⇒ higher bit rates
- Existing solutions
 - No access to source code, and/or
 - Not fulfilling requirements
 - Much to learn from "rolling our own"
- Goal: Fully open software, suitable as research tool

Worldview

Quality of service, as perceived from the *endpoints*, by the *users*. Connected by the net: Virtual presence and true interaction

H Q2S

Networked ensemble playing

Other applications:

- Transmission of acoustic environments
- Advanced videoconferencing

Related work at Q2S/NTNU

Ola Strand:

Transmission of audio and video

Håkon Liestøl Winge:

Measured influence of latency

Otto Wittner / Sigurd Saue:

Low-delay Windows Streamer

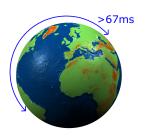
Trond Iver Røste Pedersen:

Streaming in Java

Snorre Balliere Farner et.al.:

Influence of latency and reverberation

Requirements


- Low latency:
 Less than 20 30 ms for ensemble playing
- Multiple channels:
 For realistic transmission of acoustic environments and multi-channel 3D audio
- High quality:CD-quality and upwards

H Q2S

Latency: How low can it be?

Trondheim - New Zealand: 170 ms

- The speed of light too low?
- Only "near" parts of the world within reach

Specification (minimum)

Audio: 44.1kHz/48kHz, 16bit, two-channel PCM,

possibility for coding.

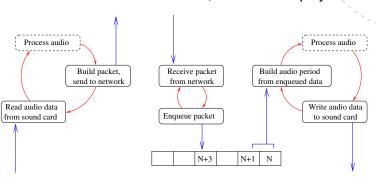
Network: UDP/IP, with precautions against UDP shortcomings.

No retransmission.

Latency: Less than 20 ms (analog to analog) over LAN.

Synchronisation:

Receiver and sender must be kept in sync.


 Buffering, to minimise the effects of network transmission time jitter

Implementation overview

Three threads: Recorder/sender, receiver and playback

Packet format

The payload of the UDP packet:

Audio data (o	ne period)	_//	Seq. Num.	Time stamp	
		//	***************	*****	
Frame 1	Frame 2			Frame M	
Ch. 1 sample	Ch. 2 sample			Ch. N sample	

Packet stream positions:

Sequence number plus frame-level offset into packet

Packet stream control

Protocol implicitly defined by packet format (sequence numbering) and receiver enqueueing combination.

Handles UDP shortcomings and network transmission problems.

- Order packets
- Detect lost/missing packets
- Reject duplicates
- Reject late packets

Missing packets replaced by dummy data. (Possibility: Error concealment.)

Synchronisation

- The receiver queue
 - · A sliding window onto the packet stream
 - Ringbuffer of pointers to packets
- "Large scale" synchronisation
 - "Early" packet (outside window) ⇒ resynchronisation
 - "Too many" late packets recently \Rightarrow resynchronisation
- Drift adjustment by watermark algorithm
 - Queue length too high ⇒ skip single samples (frames)
 - Queue length too low ⇒ reuse single samples

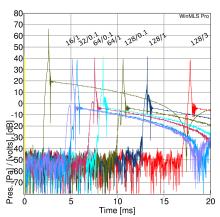
J Q2S

Latency measurements

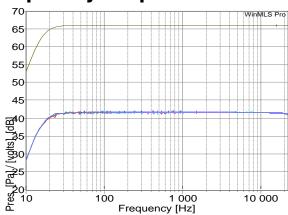
Audio delivered in periods

- Sender sound card buffer: One period of latency
- Receiver sound card buffer: Up to one period
- Receiver queue: Adjustable
- Network transmission time
- A/D and D/A: 2-3 ms
- Processing latency (software, OS)

HQ25


Measurement setup

- Two Linux computers, 2.6.12 multimedia kernels
- M-Audio Delta44 audio interfaces
- Connected through a switch
- Full duplex stereo transmission with LDAS
- Impulse response measurements
- Transmission monitored by listening to audio


H_{Q2S}

Impulse response measurements

Frequency response

			\
P. size	Queue len.	Mean latency	St. dev.
128	3	15.2	0.8
128	1	11.0	0.8
128	0.1	8.2	0.6
64	1	5.8	0.4
64	0.1	4.9	0.4
32	0.1	3.1	0.2
16	1	2.6	0.1

Latency in milliseconds for audio transmission with LDAS. (Measured from analog input to analog output. Fs = 48kHz.)

Similar solutions

O2S

- netjack (Torben Hohn)
- jack.udp (Rohan Drape)
- streamBD (SoundWIRE group, CCRMA)
- Ilcon (Volker Fischer)

Thanks!

H Q2S

In particular:

Lee Revell, Mindpipe Audio

Advice and discussions:

- Svein Sørsdal, SINTEF
- Georg Ottesen, SINTEF
- Jon Kåre Hellan, Uninett
- Paul Calamia, Rensselaer Polytechnic Institute

Availability

- Open Source, GNU General Public License
- Download: http://www.q2s.ntnu.no/~asbjs/ldas/ldas.html
- Mailing list: https://pat.q2s.ntnu.no/mailman/listinfo/ldas-dev

