swonder3Dq: Auralisation of 3D objects with Wave Field Synthesis

Marije A.J. Baalman
Fachgebiet Kommunikationswissenschaft
Technische Universität Berlin
Overview

- Complex sound sources in WFS
- Implementation
 - 3D models
 - WFS calculation
 - user interface
 - engine
- First tests
- Future work
Principle of Huygens

swonder3Dq: auralisation of 3D objects with WFS – 3 – Marije Baalman
Principle of Huygens

swonder3Dq: auralisation of 3D objects with WFS – 4 – Marije Baalman
Wave Field Synthesis

swonder3Dq: auralisation of 3D objects with WFS – 5 – Marije Baalman
Wave Field Synthesis

swonder3Dq: auralisation of 3D objects with WFS – 6 – Marije Baalman
Source types

Virtual point source

Plane wave

Virtual point source situated in front of the loudspeaker array
Complex sound sources

• Currently implemented source types:
 – point source
 – plane wave

• “Ad hoc” solutions for reproduction of large sources
 – Virtual panning spots
 – Multiple point sources

• Start of research for reproduction of sound sources with radiation characteristic

swonder3Dq: auralisation of 3D objects with WFS – 8 – Marije Baalman
Source model

• Object whose vibration is known or defined on the surface

• The geometry of the object is known or defined

• The surface vibration can be divided in a source signal $S(\omega)$ and a filtering function $G(\omega, r)$ that is dependent on frequency and position on the surface

swonder3Dq: auralisation of 3D objects with WFS – 9 – Marije Baalman
Elevation

- Current WFS-implementation only takes points in account within the horizontal plane.
- For 3D objects points outside of this plane are also relevant.
- For this a derivation of the WFS-driving function is necessary for points outside of the horizontal plane.
Geometry for elevated points

Figure 1. Geometry for the derivation of the $2\frac{1}{2}$D-operator. Ψ_1 and Ψ_2 are points from the source distribution, \vec{r}_1 and \vec{r}_2 the vectors to a point M on the integration line m. \vec{n} is the normal on the plane S, $\Delta\vec{r}$ is the vector from a point M on the integration line to the receiver point R.

Figure 2. The stationary point y_0 lies on the cross-section of plane S and the plane through Ψ and R. In practice $\Delta\vec{r}_0$ will in fact be $\Delta\vec{r}$.
Implementation

- General design
- 3D models
- WFS calculation
- Refinement
- User interface
- Engine
Design

- Project
 - Object
 - Mesh
 - Vertices (points on the object)
 - Filters
 - Location
 - Translation
 - Rotation
 - Scale

swonder3Dq: auralisation of 3D objects with WFS – 13 – Marije Baalman
3D models

- several existing libraries, data formats and viewers for *mesh* data
 - GNU Triangulated Surface (gts) library
 - mview
 - geomview
 - INRIA, medit

- criteria:
 - open source
 - easily extendible: identifiable vertex points
3D models

- **GeomView**
 - external control possible
 - available in Linux distributions

- **mview**
 - written using Qt-Libraries
 - easily extendible

- **gts**
 - vertex points not identified, so difficult to add filter nodes

swonder3Dq: auralisation of 3D objects with WFS – 15 – Marije Baalman
WFS calculation

• For each object
 - for each location
 • transform mesh
 • for each point (& for each speaker)
 - check visibility
 - calculate stationary point
 - calculate delay and attenuation
 - convolution with filter
 - save to disk
Visibility check

- Sound from points on the source that are at the backside (seen from the speaker) of the object, will not be heard by that speaker
 - calculate line segment between point and speaker
 - calculate crossings with surfaces
 - if there is a crossing with one of the object surface, point is obscured

- **Diffraction of waves is neglected!**
Refinement

- midvertex insertion
Filter average

- *inverse distance weighting*

\[
Z_j = \frac{\sum_{i=1}^{n} \frac{Z_i}{h_{ij}^\beta}}{\sum_{i=1}^{n} \frac{1}{h_{ij}^\beta}}
\]
Filter average

\[\text{swonder3Dq: auralisation of 3D objects with WFS} - 20 - \text{Marije Baalman} \]
Software *swonder3Dq*

- Graphical user interface to define a project and do the calculations of the filters

 swonder3Dq

- Command line program to control the engine and viewer
 - Controllable with OpenSoundControl (OSC)

 swonder3d_engine
swonder3Dq: auralisation of 3D objects with WFS – 22 – Marije Baalman
auralisation of 3D objects with WFS – Marije Baalman
swonder3Dq: auralisation of 3D objects with WFS – 24 – Marije Baalman
OSC control over engine

- /start
- /stop
- /project - filename
- /change – object, location
- /mute – object
- /client – host, port
- /info – about renderer status, project, object, location
- /geomview/start
- /geomview/stop
- /geomview/project
- /geomview/array
- /geomview/top
- /geomview/front
- /verbose
- /quit

swonder3Dq: auralisation of 3D objects with WFS – 25 – Marije Baalman
First tests

- With a 24 speaker prototype setup
- This approach does give a stronger spatial impression
- Problem with neglecting diffraction
Problem

\textit{swonder3Dq:} auralisation of 3D objects with WFS – 27 – Marije Baalman
Future work

- Study of diffraction and implementation
- Listening tests
- Usability tests by working with composers
- release on sourceforge:

http://swonder.sourceforge.net

swonder3Dq: auralisation of 3D objects with WFS – 28 – Marije Baalman