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Preface

Being the fourth of its kind, the International Linux Audio Conference 2006 is once
again taking place at the ZKM | Institute for Music and Acoustics in Karlsruhe,
Germany. By now the conference has become an established event and is worth
being marked in calendars early.

We are very happy about the ongoing interest and devotion of our participants
and guests. This allows us to offer a wide range of different programme entries—
presentations, lectures, demos, workshops, concerts and more.

As with the last conference all submitted papers have again undergone a review
process. At least two independent experts have read and commented on each pa-
per, and their feedback was used by the submitters to further improve on the clarity
and correctness of their work. This has once again resulted in what we think is a
fine selection of currently ongoing developments in the Linux/Audio software scene.

As each year, we want to thank everyone who has participated in bringing this
LAC2006 conference to life—authors, composers, reviewers, helpers and anyone we
may have forgotten—and we wish everyone a pleasant and enjoyable stay at the
ZKM and in Karlsruhe.

Götz Dipper and Frank Neumann
Organization Team LAC2006

Karlsruhe, April 2006

The International Linux Audio Conference 2006 is supported by
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Acoustical Impulse Response Measurement with ALIKI

Fons ADRIAENSEN
fons.adriaensen@skynet.be

Abstract
The Impulse Response of an acoustical space can
be used for emulation of that space using a con-
volution reverb, for room correction, or to obtain
a number of measures representative of the room’s
acoustical qualities. Provided the user has access
to the required transducers, an IR measurement can
be performed using a standard PC equipped with a
good quality audio interface. This paper introduces
a Linux application designed for this task. The the-
oretical background of the method used is discussed,
along with a short introduction to the estimated
measures. A short presentation of the program’s fea-
tures is also included.

Keywords
Acoustics, impulse response, convolution, reverb.

1 Introduction

Equipment for measuring the acoustical pa-
rameters of an environment has traditionally
been the realm of a small group of highly spe-
cialised electronics manufacturers. During the
last decade, the ready availability of mobile
computers and of high quality portable audio
interfaces has resulted in a move towards mainly
software based solutions.

Early programs just emulated the standard-
ised (hardware based) procedures to measure
e.g. reverb time. The computing power being
available today enables the use of other meth-
ods, such as a direct measurement of a room’s
impulse response, from which all interesting in-
formation can be derived. Several methods to
capture impulse responses have been developed,
and these will be discussed below.

It seems that very little free and Linux-based
software is available for this task. The Digital
Room Correction package from Denis Sbragion
1 includes some scripts to perform an impulse
response measurement. It is possible to obtain
very good results with these scripts, but they
are not easy to use.

1http://drc-fir.sourceforge.net

In the Windows based world, a number of so-
lutions have been available for some time. Most
of these are based on the use of pseudo-random
sequences. The MLSSA system from DRA Lab-
oratories 2 (requiring special hardware) was one
of the first using this method, and is well known.
As an example of a package using more ad-
vanced methods, the Aurora Plugins 3 from An-
gelo Farina should be mentioned.

This paper introduces a new Linux based in-
tegrated system 4 developed by the author, and
available under the terms of the GPL. ALIKI
will capture impulse responses in up to eight
channels simultaneously. The recorded data can
be used directly for e.g. digital room correc-
tion, edited and prepared for use in a convolu-
tion based reverb, or used to compute acoustical
parameters such as reverb time and various en-
ergy ratios.

The following sections will describe the mea-
surement and analysis methods used in this soft-
ware.

2 IR measurement methods

The impulse response (IR) of a system is the
output signal it produces for an input consist-
ing of a single Dirac pulse. The mathematical
definition of a Dirac pulse requires zero width
and unit energy, which is not possible in the real
world, so in practice finite-width impulses com-
patible with the required bandwidth are used.
In a sampled system in particular, the Dirac im-
pulse is a signal consisting of one sample of unit
amplitude followed by all zeros. It contains all
frequencies from zero to the Nyquist limit with
equal energy and a known phase.

Provided the system is linear and time-
invariant, the IR contains all information there
is about its behaviour, and permits the calcula-
tion of the system’s response to any input signal.

2http://www.mlssa.com
3http://farina.eng.unipr.it/aurora/home.htm
4http://users.skynet.be/solaris/linuxaudio/aliki.html
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Figure 1: IR measurement using filtered Dirac pulse. A: theoretical model, B: practical realization.

The main problem with using Dirac pulses in
an acoustical measurement is that as a result of
their very short duration and finite amplitude,
they contain very little energy, and measure-
ment accuracy will be limited by the signal to
noise ratio of the equipment used and of the
system itself. While it is possible to use Dirac
pulses reproduced by a loudspeaker in the con-
trolled environment of an acoustics laboratory,
this is all but infeasible in most real life situa-
tions, e.g. for measuring a room or concert hall,
where there will always be background noises of
some sort.

There are basically two ways to overcome this
difficulty: either generate a high energy impulse
directly as a sound, or find some method to
spread the test signal over a longer time and
to undo this operation after the measurement.

For the first approach, various methods have
been used by acoustics engineers, ranging from
exploding balloons and starter’s pistols to very
expensive special equipment to generate short
high amplitude sound pulses. While such meth-
ods can be used e.g. to measure the reverb time
of a concert hall, they still require a very large
dynamic range in the measurement system, and
they are not accurate and repeatable enough to
obtain an IR to be used for room correction or
for a convolution reverb.

The second solution is based on the follow-
ing idea. Suppose we have a filter H with
complex frequency response H(ω). If the filter
has a non-zero gain at all frequencies, we can
find an inverse filter R with frequency response
R(ω) = z−n/H(ω). The z−n is a pure delay
required to make such a filter causal and physi-
cally realizable. Putting the two filters in series,
only the (known) delay remains. Since the fil-
ters are linear, and if we assume the same of the
system to be measured, we can put the system
in between the two filters and obtain its impulse

response using the filtered signal instead of the
Dirac pulse (fig.1A).

Since we can regard any signal as the output
of an FIR filter having the signal’s sample val-
ues as its coefficients, we could in theory use any
signal we want as long as the inverse filter exists
and we can find some way to compute and im-
plement it. For some classes of signals this can
be done relatively easily, and that is the basis of
the two methods discussed in the next sections.
In practice the theoretical model of fig.1A is re-
alized by generating the signal directly instead
of filtering a Dirac pulse, and the inverse fil-
tering is usually done by (de)convolution rather
than a by real filter (fig.1B).

2.1 Maximum length binary sequences
Pseudo random binary sequences can be gener-
ated by a shift register with exclusive-or feed-
back from selected taps. Provided the correct
feedback terms are used, a generator using N
stages will produce a maximum length sequence
(MLS) of length L = 2N − 1. A sampled audio
signal derived from such a sequence has exactly
the same power spectrum as a Dirac pulse re-
peated every L samples, but it has L times more
power for the same amplitude. For example,
using an L = 1023 sequence will improve the
signal to noise ratio by 30 dB.

The inverse filtering for such a signal can be
done efficiently by using the Hadamard trans-
form. Like for the Fourier transform, a ‘fast’
version of this transform exists (and it is even
simpler than the FFT). This is the way the
MLSSA software mentioned before (and many
other systems) operate.

For acoustical measurements, the signal can
be filtered further to obtain a ’pink’ spectrum
instead of ’white’ noise, again improving the
S/N ratio at low frequencies where it is usually
the most problematic.

A more elaborate discussion of MLS based
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techniques can be found in the references (Van-
derkooy, 1994).

The main difficulty with the MLS method is
its sensitivity to non-linear behaviour. Most
loudspeakers produce substantial amounts of
distortion, and this will interfere with the mea-
surement and show up as spurious signals in the
impulse response. The method discussed in the
next section, while more complex to implement,
does not have this problem.

2.2 Swept sine techniques
A second class of signals for which the inverse
filter can be computed easily are linear and log-
arithmic frequency sweeps. For a linear sweep,
the inverse is just the time reversal of the origi-
nal signal. Such a signal has a ‘white’ spectrum,
and for acoustical measurements a logarithmic
sweep, having a ‘pink’ power spectrum is often
preferred. In that case, provided the sweep is
not too fast, the inverse filter is again the time-
reversed original, but modified by a +6 dB per
octave gain factor (6 dB, and not 3, since a +3
dB per octave correction applied to each filter
separately would make both of them, and their
product, ‘white’). In both cases the inverse filter
can be realized efficiently by using FFT-based
convolution.

The advantage of using a sweep is that at any
time we produce only a single frequency, and
any distortion introduced will consist of the har-
monics of that frequency only. If we use a rising
frequency sweep, the harmonics will be gener-
ated ahead of the same frequencies appearing
in the signal. So after deconvolution, any dis-
tortion will appear as spurious peaks in negative
time in the impulse response, and most of it can
then be edited out easily.

Another interesting feature of this method is
that it does not depend on exact synchronisa-
tion of the playback and capture sample clocks.
Any frequency error between these will result
in a ’smearing’ of the impulse response, in the
sense that a Dirac pulse becomes itself a very
short sweep. It is even possible to correct for
this after the deconvolution.

The sweep method was pioneered by Angelo
Farina (Farina, 2000), and it is the one used in
ALIKI.

3 Measurements derived from the
impulse response

This section provides a quick overview of some
acoustical measures that can be calculated from
a captured impulse response.

If IR measurements are performed for use in
a convolution reverb system, then the choice of
the transducers used is largely a matter of com-
mon sense combined with aesthetic preferences.
The same is to some extent true if the object is
room correction.

In contrast, in order to derive the measures
described below, the IR measurement must be
done according to a standardised procedure,
and by using the correct equipment. In prac-
tice this means the use of true omnidirectional
speakers (purpose built), and in some cases of a
microphone calibrated for diffuse-field measure-
ments (i.e. having a flat response integrated
over all directions rather than on-axis).

The two ISO documents mentioned in the
References section provide a good introduction
to what is involved in such measurements.

All these values can be calculated for the full
frequency range signal, for an A-weighted ver-
sion, or octave or sub-octave bands.

3.1 The Schroeder integral

Most of the values described in the follow-
ing sections can be obtained by computing the
Schroeder integral of the IR, defined as follows.
Let p(t) be the impulse response, with t = 0
corresponding to the arrival of the direct sound.
Then the Schroeder integral of p(t) is the func-
tion

S(t) =
∫ ∞

t
p2(t)dt (1)

In other words, S(t) corresponds to the energy
still remaining in the IR at time t. When plotted
in dB relative to the maximum value at t =
0, S(t) will be same as the level decay curve
obtained after switching off a steady signal.

3.2 Reverb Time and Early Decay
Time

The conventional definition of the Reverb Time
is the time required for the sound level to decay
to -60 dB relative to the original level, after a
steady signal (normally white or filtered noise)
is switched off. This time is normally denoted
RT60 if the S/N ratio permits a reliable mea-
surement down to that level, or RT30 if it is
extrapolated from the -30 dB time.

For a measurement derived from an IR, it
can be read directly from the Schroeder inte-
gral. The ISO standard prescribes that RT30

should be derived from the times the integral
reaches respectively -5 dB and -35 dB, obtained
by least-squares fitting, and extrapolated to the
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60 dB range. The RT20 value is computed form
the -5 dB and -25 dB times in the same way.

The Early Decay Time EDT is similar but
derived from the -10 dB point of the integral,
again by least-squares fitting.

3.3 Clarity, Definition and Central
Time

The Clarity measure describes the ratio of the
energies (in dB) before and after a given time
referred to the arrival of the direct sound. This
value provides a good indication of how ’clear’
or ’transparent’ the sound heard by a listener
at the measurement position is. For speech, it
is measured at 50 ms, while for music 80 ms is
used. The two values are denoted C50 and C80.
The definition of C50 is

C50 = 10log10

∫ 0.050
0 p2(t)dt∫∞
0.050 p2(t)dt

(2)

= 10log10
S(0) − S(0.050)

S(0.050)
(3)

and similar for the 80 ms value.
The Definition is similar to Clarity, but is

the simple ratio (not in dB) of the early sound
energy to the total energy. In practice it’s not
necessary to compute both C and D, as they
can easily be derived from each other.

The Central Time is the ’centre of gravity’ of
the energy in the IR, defined as

TS =
∫∞
0 tp2(t)dt∫∞
0 p2(t)dt

(4)

3.4 Early Lateral Energy
To compute the values introduced in this sec-
tion, two simultaneously captured IRs are re-
quired, one using an omnidirectional free-field
microphone, and the second using a figure-of-
eight (velocity) microphone pointing sideways
(i.e. with the null pointing at the ‘centre of
stage’). These values provide some measure of
the ’width’ and ’spaciousness’ of the sound. Ex-
treme care and high quality equipment is re-
quired in order to obtain meaningful results
from these computations.

Let pL(t) be the lateral IR, then

LF =
∫ 0.080
0.005 p2

L(t)dt∫ 0.080
0 p2(t)dt

(5)

and

LFC =
∫ 0.080
0.005 |pL(t)p(t)|dt∫ 0.080

0 p2(t)dt
(6)

LFC is said to correspond closer to subjective
observation.

4 ALIKI program structure

ALIKI is written as an integrated package con-
trolled by a graphical user interface5. Techni-
cally speaking it consists of two separate exe-
cutables (the audio interface part is an inde-
pendent process), but this is hidden from the
user who just sees a single interface. Figure 2
shows the main modules and files used.

ALIKI can interface via JACK, or use ALSA
devices directly, or it can be run without any
audio hardware for off-line processing of stored
data. It uses its own sound file format, but fa-
cilities to import or export WAV-format or raw
sample files are included. The special format
keeps all data for multichannel impulses conve-
niently together, facilitating handling (in partic-
ular when you have many files, all with similar
and confusing names). It also allows to include
specific metadata, for example parameters to be
used by a convolution reverb. The metadata
will become even more important when the pro-
gram is extended to allow automated multiple
measurements, e.g. to obtain polar diagrams.

4.1 The capture module
Functions of this module include

• input measurement parameters (frequency
range, sweep time, channel names, etc.),

• generate and store the sweep and inverse
filter waveforms,

• provide test signals and metering,

• perform the actual measurements and store
the results.

ALIKI will handle up to 8 audio inputs. So
it is possible to record e.g. an Ambisonics B-
format, a stereo pair and a binaural format in
one operation. Capturing the IRs can be also
be done without using ALIKI, e.g. by using
Ardour to play the sweep file and record the
microphone signals (ALIKI will read Ardour’s
Broadcast Wave files).

4.2 The deconvolution module
This module reads the recorded waveforms and
the inverse filter file, and calculates the actual
impulse responses. It uses a fast FFT-based
convolution algorithm. An optional correction

5At the time of writing, the GUI is still in full devel-
opment, therefore no screenshots are yet available.
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Figure 2: ALIKI program structure and files

filter compensating for the response of the loud-
speaker and/or microphone can be used.

The results are saved to the raw impulse re-
sponse files, and transferred to the editor mod-
ule.

4.3 The editor module

This provides visualisation and basic editing of
impulse responses. It is used to

• normalise the IR to a standard level,

• calibrate the time axis (i.e. put the direct
sound at t = 0),

• trim the end of the IR to remove noise,

• remove the direct sound if required.

The editor will operate on groups of impulse
responses (e.g. a stereo pair or B-format) pre-
serving relative timing and levels. Edited IRs
can be saved for later use. Unless the user re-
ally wants it, the editor will never overwrite the
original waveforms.

This module has one additional function: the
first few milliseconds of an IR can be used to
compute an inverse FIR filter (up to 4096 taps)
that will be used by the deconvolution engine
to compensate for the response of the speaker
and microphone. It uses a simple FFT-based
inversion method, and an interactive procedure
steered by the user in order to avoid major er-
rors that could result from a simple automated
calculation.

4.4 The filter, integration and measure
modules

The remaining modules in fig.2 are closely inte-
grated from the user’s point of view.

The Schroeder integral can be computed and
visualised for the filtered or full-range IRs. A-
weighing and octave band filtering is again
performed using FFT-base convolution, and is
combined with the backwards integration. The
integrals are stored with a resolution of about
1 millisecond. They can be exported in a for-
mat readable by applications such as Gnuplot,
which can convert them to a number of graphi-
cal formats.

The first release of ALIKI computes EDT ,
RT20, RT30, RTuser, TS , C50,80,user, D50,80,user,
LF and LFC. Others (such as IACC) maybe
added in future versions.

All measured values can be exported as text,
CSV, or Latex table format for use in spread-
sheets or reports.
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ABSTRACT 
GoingPublik is a work for distributed ensemble and wearable 
computers. The core idea behind the work is a strategy of mo-
bility employing a wearable computer system running a soft-
ware based electronic scoring system. The score allows for 
‘composed improvisation’, which permits improvisational ele-
ments within a compositional structure. By electronically moni-
toring the performer’s physical positions during performance 
using universal inputs such as geographical positions obtained 
via satellites and sensors using the earth’s magnetic field, the 
score makes suggestions to various degrees and times. This 
paper shows how electronic scoring can be self-regulating and 
depicts how performers using it are able to interact with one 
another and to create a unique choreographic dispersion of 
sound in space [1]. 

 
Keywords 

Wearable Computers, Score Synthesis, HCIs, Aos, Bluebottle, 
Linux, Q-bic 
 

1. INTRODUCTION 
In GoingPublik sonic coherency is accomplished through a 
theory of ‘distribution’. All of the electronic scoring systems 
used are matched and share similar sensor inputs, (3d-compass 
and GPS) which are the common denominator to virtually 
linked them. So despite the physical distribution, commonly 
shared elements can be structurally exploited. For example, at 
moments of close proximity between performers synchronized 
“tutti like” group movements such as rotation bring about syn-
chronized changes in the score. The compositional quantities 
and qualities of the work are thereby based on spatial mobility; 
Intensity of form is held by changes in timbre and rhythmic 
modulations are brought about in conjunction with the sound 
distribution [2].  

 

2. SOFTWARE & HARDWARE 
The system hardware in its current form comprises a Strong-
ARM/XScale based proprietary wearable computer (Q-bic)[2]; 
a custom made micro programmed 3D compass sensor, a Gar-
min GPS device, and a Micro Optical SV-6 head-mounted dis-
play. The main tasks of the wearable computer is reading the 
sensor data and computing the score in real time according to 
predefined rules. The scoring application is programmed in a 
Pascal-like language called Active Oberon[4]. It runs on Blue-
bottle (Aos)[5], a lean, open source system kernel enhanced by 
a highly efficient 2.5D graphics engine that supports sophisti-
cated visual effects on the basis of general-purpose hardware.  
 

3. BEYOND OPEN SOURCE 
 

3.1 Open Sources and Useable Toolboxes 
Open source software is like an open toolbox. It is a necessary 
but often insufficient step towards truly "malleable" software. 
What is actually needed is mastery and full control of the tools 
in the box. ETH's integrated programming language Oberon has 
been available as open source since its invention. Oberon dif-
fers from many comparable systems by its simplicity, minimal-
ism and conceptual uniformity in the spirit of Niklaus Wirth's 
widely acknowledged lean-system tradition. The newest evolu-
tion along this line is the Active Oberon language and runtime. 
As an innovation, Active Oberon introduces a new computing 
model based on interoperable objects with encapsulated active 
behavior. This model is ideally suited for programming "the 
new media", and it easily scales up to distributed systems. This 
issue addresses the growing interest in the use of computers in 
the new arts in general and the quite apparent benefits of cus-
tom software design in particular. Using the "Going Publik" 
project software as a proof of concept, we shall argue in favor 
of both application-aware runtime kernels and small ad-hoc 
languages as an effective alternative to widely spread graphic 
builders.  
 

3.2 The Lean versus the Fat System 
The reusability of typical open source software is not guaran-
teed by its openness alone. Even if all the source code that is 
needed to rebuild an application is provided, it is often very 
difficult to reuse parts of a project for new purposes. Even re-
ducing the functionality of an open source system can be diffi-
cult because of non-modular or inconsequent design. The C 
based programming languages typically used in open source 
projects does not encourage a clean modularization and can 
easily result in header-file incoherencies whose correlation can 
only be grasped after a long period of review. One could con-
sider the Linux kernel as an example. Although its system is 

Figure 1. Members of the ensemble in “distributed” and  
“huddle” formations. Each player is wearing a Q-bic 

computer, sensor network and display glasses.  
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“open”, it is at the same time “closed”, because only few people 
are able to really contribute to its development (in fact, all 
changes in the Linux kernel are still made by the original 
author, Linus Torvalds). Of course, kernels are not simple top-
ics and this is not really that different in the case of Aos. How-
ever, in a lean and compact system like Aos there are simply 
fewer unnecessary pitfalls and time consuming debug sessions.  
 
To continue the comparison between Linux (a well know sys-
tem) and Aos (a less known system) in order to better under-
stand the points made above, one can state that the Linux de-
velopment can profit largely from a massive amount of man-
power and available tools, where as Aos is more limited in this 
regard.  However, most of the tool chain used for Linux devel-
opment would not be necessary or would have been much eas-
ier to develop for  a small and completely compile-time type 
safe programming language such as Active Oberon. Although 
the available Linux tools and the number of C oriented pro-
grammers who are willing to program far outweigh the time lost 
on insufficiencies of the used programming language, there is 
still no progress in obtaining malleable and more coherent tools 
for the future. 
 
To improve code reusability and understandability, ETH fol-
lows the lean system initiative. Lean systems have a well-
designed, clear and modular structure based on a unifying set of 
concepts. Lean systems are teachable and therefore understand-
able. With a deep understanding of a software layer, it becomes 
possible to adapt it to new needs or to only port or implement 
the needed parts that are essential in solving a given problem. 
Having the possibility of leaving out unneeded parts not only 
improves resource efficiency of a program, but also reduces the 
number of possible errors and potential exploits. 

 

 
4. THE SOFTWARE 
 

4.1 Modularity and Malleability  
Contained in the GoingPublik software package are eight mod-
ules, which can be more or less included or excluded during 
runtime. The elements depicted in Fig.2. within the rectangle 
are the software components, the elements depicted to the left 
are the sensor systems, and the elements depicted to the right 
are those drawn into the screen areas of the display glasses.  
The GPS and the 3d Compass sensor are connected per Blue-
tooth and are mounted as wearable sensors on the performer’s 

clothing. The graphic elements drawn by the Info Viewer, the 
Matrix Viewer and the Icon Viewer modules are combined in 
the display glasses into a single score as depicted in Fig.3. To 
exemplify the system’s malleability: When the software module 
“Icon State Engine” is not needed for the performance version 
without the behavioral icons, then it would simple be left out of 
the software package1. The icons would not appear in the 
viewer and the other modules would not be affected in any way 
and would operate as expected.  
 

5. THE MATRIX WINDOW 
 

5.1 The Modulating Matrix 
The basis of the electronic score is a modulating matrix. The 
resolution of the matrix is determined by the performer’s posi-
tion within the performance space, which is obtained via GPS 
satellites or generated by a GPS simulator. In either case, the 
received GPS string is parsed and given further as x, y value 
pairs that reference the position within a predefined area. By 
moving within this area, the performer influences the position 
of the matrix’s lines, therefore continuously adjusting the ‘reso-
lution’ of it to parameterize sonic domains with frequency and 
time values. The ‘Range-Lines’ of the matrix move on the hori-
zontal plane in relation to the North-South axis; the ‘Time-
Lines’ move on the vertical plane in relation to the West-East 
axis. The Time-Lines move in contrary motion and modulate 
the spaces between the lines into equidistant and non-
equidistant states. The ‘Conduction-Arm’ travels through the 
matrix from the left to facilitate score reading. The time taken 
by the Conduction-Arm to scan through the space between two 
Time-Lines is always a constant value in milliseconds (inde-
pendent of the distance), but is dependent on walking speed 
measured in meters per minute. There are four discrete tempi: 
Rest, Relax, Work and Hurry. The speed of the Conduction-
Arm therefore makes a quantitative difference in the amount of 
time the performers may ‘stay’ on an area of the score image.  

 

The movement of the Range-Lines brings about equidistant 
                                                                    
1 Such a malleable system could also be realized by a program 

written in C, but its lack of modularization concepts on the 
language level would require more efforts of the programmer. 

Figure 3. The Matrix Window: (A) Score Image, (B) 
TimeLines, (C) RangeLines, (D) Conducting Arm, (E) 

IconBar, (F) GoIcons, (G) ModIcons, (H) StopIcons, (I) 
Timer, (J) TempoBar, (K) Tempo, (L) GPS x-Coordinate, 

(M) GPS y-Coordinate, (N) Activity Graph. 

Fig. 2. Depicted is a schematic showing the relation-
ships between the sensor systems and the component 

packages of the GP software.  
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spaces, which limit and expand the instrumental range based on 
changes of position within the space. When all Range-Lines are 
present, seven range spaces can be seen. The available ranges 
would then be as follows: Outside, Very Low, Low, Middle, 
High, Very High and Outside. Ranges are always kept in con-
secutive order, the performers freely choosing the lowest initial 
range first and then continue upward from there. The perform-
ers decide where the boundaries the instrumental ranges are and 
what is meant by ‘outside’ the instrument. 

 

 

5.2 Directional Imaging 
There are four score images and each is assigned a direction. A 
discrete resolution of eight possible ‘headings’ is used and these 
values determine the score image. Single score images are ren-
dered at the poles of the compass and superimpositions between 
these. The 3d-compass also measures ‘pitch’ and ‘roll’, whose 
values distort the score image to create ‘variations’. The larger 
the intensity of pitch and roll is, the greater the distortion of the 
score image is. The size of the displayed score image is de-
pendent on walking activity. This is calculated using speed 
average over a given period of time. If the performer is ‘stand-
ing’ more than ‘walking’, the image will enlarge up to 200%; if 
the performer is ‘walking’ more than ‘standing’, the image will 
shrink back to its original size. Variations in sound material 
therefore not only arise on account of the Conduction-Arm 
speed but also due to score image distortion and changes in 
size.  

 

5.3 The Action Icons  
Three groups of three icons contained on the “icon bar” are 
used to suggest actions to the performer. The green ‘Go-Icon’ 
and the red ‘Stop-Icon’ groups suggest changes in walking 
speed, the time spent doing so, and a random component. Re-

lated performative actions are associated with each of the icons 
to artistically integrate changes in walking activity, regulate the 
tempo in general and to integrate the performer’s sonically into 
the environment.  

 
Based on the rate of heading change, walking speed and a ran-
dom component, the ‘Mod-Icons‘ suggest how the score is to be 
read by designating parameters of ‘style’. Here, eye movement 
through the matrix is confined by phrasing rules. These rules 
are PHRASE (the division of the matrix into units of material), 
PATH (the form of the curve used to read through the matrix) 
and PLAY (the degree of density in playing while reading 
through the matrix). By interpreting the score in this manner, 
contrapuntal differences between the performers are brought 
about, so that ‘sonic windowing’ is created through which un-
occupied audio space and variation in voice density are guaran-
teed. 
 

6. THE MAPPING WINDOW 
 

6.1 Performance Modes 
There are two software based performance modes: An ‘indoor’ 
mode is for closed spaces and an ‘outdoor’ mode for open 
spaces. The indoor mode relies on a route simulator and the 
outdoor mode relies on GPS satellite information to make 
changes to the matrix and icons. The software automatically 
switches between route simulator and GPS satellite information 
dependent on satellite reception so that a performance may take 
place in and between closed and open spaces. To use the route 
simulator, each player draws a predetermined route onto the 
provided map with a handheld mouse. When finished, the per-
former presses the range button and switches back to the Ma-
trix-Window. 

 

 

6.2 Synchronization Types 
There are two types of synchronization exploited in the work: 
‘local’ and ‘global’.  Local synchronization is made possible by 

Figure 5. The Icon Menu Bar. From left to right are three 
blank Go-Icons, the Mod-Icon for “Medium Playing Den-
sity”, a blank Mod-Icon, the Mod-Icon for “Phrasing in 
Groups of Five”, a blank Stop-Icon, the Stop-Icon for 

“Stop and Hide”, and lastly the Stop-Icon for “Sit Down”. 

Figure 6. The Mapping Window: (A) Map Area, (B) Range 
Box, (C) Performer’s Route,  (D) X-Bow Position Indicator, 
(E) InfoBar, (F) Path Selector Button, (G) Path Record But-
ton, (H) Stop- Record Button, (I) Calculate Range Button, 

(J) Store Route Button, (K) Direction Indicator, (L) Length 
Indicator. 

Fig. 4. The 360° of Directional Imaging: Single 
score images are at the poles and complex images 

are between these poles. 
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the 3d compass sensor data and takes place when performers 
are “huddled” and change heading, pitch and tilt readings to-
gether, thus changing the score image at the same time and to 
the same degree. For an ‘inside’ performance the performers 
dismantle their instruments and spread the parts across the pe-
formance space. This action emphasizes the effect of distribu-
tion visually and creates a predetermined task that results in a 
predictable choreography of movements. The system sensors 
respond accordingly, and the electronic score changes in con-
junction to all movements made as the performers re-assemble 
their instruments. Global synchronization is made possible via 
GPS and takes place via Conduction-Arm synchronization and 
when there is some form of coordination of routes between two 
or more performers. For an outside’ performance three routes, 
one for each of the performers, are roughly designated. The 
greater the distance between the performers, the more varied 
their scores will appear; the lesser the distance between them, 
the more similar their scores will appear. So, when the separa-
tion between performers diminishes as they come to meet, their 
scores slowly grow in similarity until each score matrix is simi-
lar [6]. As listener, a gradual morphing from individual to col-
lective sound masses can easily be heard.   
 

7. FURTURE WORK 
 

7.1 GPS Time Mark Function 
In the next version of the GoingPublik software, the GPS Time 
Mark will be used to synch an on-board clock housed on the Q-
bic computer. The GPS Time Mark arrives at the exact same 
moment for all of the performers of the distributed ensemble 
and this event makes it possible to synchronize the movement 
of the Conduction- Arms of all of the players. To employ it 
aesthetically as a compositional mechanism, the concept of 
“global synchronization” is used again as a uniting force. Each 
of the four tempi used in the scoring system are in ratio to one 
another: Tempo “Relax” is therefore 2 * Tempo “Rest”, Tempo 
“Work” is 3 * Tempo “Rest” and Tempo “Hurry” is 4 * Tempo 
“Rest”.  The speed of the Conduction Line for the slowest 
tempo, “Rest” is used as the basis for determining the speeds of 
the other three tempi used in the score.   

 

What by “page” is meant is the width of the score image. So a 
tempo is always in terms of how long it takes the Conduction-
Line to get through one “page” of the score, One page is the 
therefore the time it takes for the Conduction-Line to transverse 
the entire score image. In this way all of the Conduction-Arms 
of all players stay synchronized and will always meet (after 
some number of pages) at the “beginning” of a score “page” 
just as certain polyrhythmic groupings meet at the initial beat 
they began at.  This feature was tested outside of the GoingPub-
lik in the work China Gates for gongs and GPS-Wrist Control-
ler [7].  
 

7.2 Collaborative Score 
The GoingPublik system allows for the unique opportunity for 
composers and performers to research the possibilities of col-
laborative scores. Through changing the .xml file that is used to 
preset the software, it is possible to designate which score im-
ages are to be loaded into the matrix.  Having each of the play-
ers or each member of a group of composers prepare a single 
score image for the system, would bring about a system score 
which would consist of four distinct scores, which would then 
“integrate” into a single whole via the system and who it works 
to parameterize and vary the score images during a perform-
ance.  This possibility of collaboration demonstrates how the 
GoingPublik software is not a single work, but system, which 
can be used to interpret a body of, works written for it and also 
how it might be used to research collaboration in general 
amongst performers and composers. 
 

8. CONCLUSION 
The movements made by the ensemble players can be under-
stood as choreographic patterns having an internal system of 
counter-point: ‘bundled movements’, or synchronized move-
ments made together are analogue to polyphony in similar mo-
tion and ‘free movement’ or non synchronized movement car-
ried out in non-relationship to one another are analogue to con-
trary motion. Therefore, a parallel can be drawn between the 
distribution amount of the performers and the degree of ‘disso-
nance’ in terms of rhythmic and range discord existing between 
them. 
 
A slight comparison between Linux and Aos system software 
was drawn. The comparison did not point to the better system, 
but was intended to serve the purpose of proposing a focus on 
new paradigms of computer science, in order to develop lan-
guages that lead to more malleable and understandable tools. As 
an innovation, the Active Oberon language was introduced as 
such a new computing model, which is based on interoperable 
objects with encapsulated active behavior. By using the Going-
Publik project as a proof of concept, it was argued that this 
computing model is ideally suited for programming need in the 
arts, in that it was made quite apparent that custom software 
design in the new arts has become quite common as has the 
needed adaptability of the that software for further develop-
ments of the same an new art works. 
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Figure 7.  The figure illustrates how the Conducting 
Line (here indicated in blue) can be synchronized in 
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Abstract

From the beginning of its development kernel 2.6
promised latency as low as a patched 2.4 kernel.
These claims proved to be premature when testing of
the 2.6.7 kernel showed it was much worse than 2.4. I
present here a review of the most significant latency
problems discovered and solved by the kernel devel-
opers with the input of the Linux audio community
between the beginning of this informal collaboration
in July 2004 around kernel 2.6.7 through the most re-
cent development release, 2.6.16-rc5. Most of these
solutions went into the mainline kernel directly or
via the -mm, voluntary-preempt, realtime-preempt,
and -rt patch sets maintained by Ingo Molnar (Mol-
nar, 2004) and many others.
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1 Introduction

In mid-2004 Paul Davis, and other Linux au-
dio developers found that the 2.6 kernel, despite
promises of low latency without custom patches,
was essentially unusable as an audio platform
due to large gaps in scheduling latency. They
responded with a letter to the kernel developers
which ignited intense interest among the kernel
developers (Molnar, 2004) in solving this prob-
lem. Massive progress was made, and recent 2.6
releases like 2.6.14 provide latency as good or
better than the proprietary alternatives. This
is a review of some of the problems encountered
and how they were solved. . . .

2 Background

The main requirements for realtime audio on a
general purpose PC operating system are appli-
cation support, driver support, and low schedul-
ing latency. Linux audio began in earnest
around 2000 when these three requirements
were met by (respectively) JACK, ALSA, and
the low latency patches for Linux 2.4 (”2.4+ll”).
The 2.6 kernel promised low scheduling latency

(and therefore good audio performance) with-
out custom patches, as kernel preemption was
available by default. However early 2.6 ker-
nels (2.6.0 through approximately 2.6.7) were
tested by the Linux audio development com-
munity and found to be a significant regres-
sion from 2.4+ll. These concerns were com-
municated privately to kernel developer Ingo
Molnar and 2.6 kernel maintainer Andrew Mor-
ton; Molnar and Arjan van de Ven responded
in July 2004 with the ”Voluntary Kernel Pre-
emption patch” (Molnar, 2004). The name is
actually misleading - ’Voluntary’ only refers to
the feature of turning might sleep() debugging
checks into scheduling points if preemption is
disabled. The interesting features for realtime
audio users, who will always enable preemption,
are the additional rescheduling points with lock
breaks that Molnar and van de Ven added wher-
ever they found a latency over 1ms.

3 Latency debugging mechanisms

The first requirement to beat Linux 2.6 into
shape as an audio platform was to develop a
mechanism to determine the source of an xrun.
Although kernel 2.6 claims to be fully pre-
emptible, there are many situations that pre-
vent preemption, such as holding a spinlock, the
BKL, or explicitly calling preempt disable(), or
any code that executes in hard or soft interrupt
context (regardless of any locks held).

The first method used was ALSA’s ”xrun de-
bug” feature, about the crudest imaginable la-
tency debugging tool, by which ALSA simply
calls dump stack() when an xrun is detected, in
the hope that some clue to the kernel code path
responsible remains on the stack. This crude
mechanism found many bugs, but an improved
method was quickly developed.

In the early days of the voluntary preemp-
tion patch, Molnar developed a latency trac-
ing mechanism. This causes the kernel to trace
every function call, along with any operation
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that affects the ”preempt count”. The pre-
empt count is how the kernel knows whether
preemption is allowed - it is incremented or
decremented according to the rules above (tak-
ing spinlock or BKL increments it, releasing
decrements, etc) and preemption is only allowed
when the count is zero. The kernel tracks the
maximum latency (amount of time the preempt
count is nonzero) and if it exceeds the previous
value, saves the entire call stack from the time
the preempt count became positive to when it
became negative to /proc/latency trace).

So rather than having to guess which kernel
code path caused an xrun we receive an ex-
act record of the code path. This mechanism
has persisted more or less unchanged from the
beginning of the voluntary preemption patches
(Molnar, 2004) to the present, and within a
week of being ported to the mainline kernel
had identified at least one latency regression
(from 2.6.14 to 2.6.15, in the VM), and has
been used by the author to find another (in
free swap cache()) in the past week. Dozens of
latency problems have been fixed with Molnar’s
tracer (everything in this paper, unless other-
wise noted); it is the one of the most successful
kernel debugging tools ever.

4 The BKL: ReiserFS 3

One of the very first issues found was that Reis-
erFS 3.x was not a good choice for low la-
tency systems. Exactly why was never really
established, as the filesystem was in mainte-
nance mode, so any problems were unlikely to
be fixed. One possibility is that reiser3’s exten-
sive use of the BKL (big kernel lock - a coarse
grained lock which dates from the first SMP im-
plementations of Linux, where it was used to
provide quick and dirty locking for code with
UP assumptions which otherwise would have to
be rewritten for SMP). ReiserFS 3.x uses the
BKL for all write locking. The BKL at the
time disabled preemption, which is no longer
the case, so the suitability of ReiserFS 3.x for
low latency audio systems may be worth revisit-
ing. Hans Reiser claims that ReiserFS 4.x solves
these problems.

5 The BKL: Virtual console
switching

One of the oldest known latency issues involved
virtual console (VC) switching (as with Alt-Fn),
as like ReiserFS 3.x this process relies on the
BKL for locking which must be held for the

duration of the console switch to prevent dis-
play corruption. This problem which had been
known since the 2.4 low latency patches was
also resolved with the introduction of the pre-
emptible BKL.

6 Hardirq context

Another issue discovered in the very early test-
ing of the voluntary preemption patches was ex-
cessive latency caused by large IO requests by
the ATA driver. It had previously been known
that with IDE IO completions being handled
in hard IRQ context and a maximum request
size of 32MB (depending on whether LBA48
is in effect which in turn depends on the size
of the drive), scheduling latencies of many mil-
liseconds occurred when processing IO in IRQ
context.

This was fixed by adding the sysfs tunables:
/sys/block/hd*/queue/max sectors kb
which can be used to limit the amount of IO

processed in a single disk interrupt, eliminating
excessive scheduling latencies at a small price in
disk throughput.

Another quite humorous hardirq latency bug
occurred when toggling Caps, Scroll, or Num
Lock - the PS/2 keyboard driver actually spun
in the interrupt handler polling for LED status
(!). Needless to say this was quickly and quietly
fixed.

7 Process context - VFS and VM
issues

Several issues were found in the VFS and VM
subsystems of the kernel, which are invoked
quite frequently in process context, such as
when files are deleted or a process exits. These
often involve operations on large data struc-
tures that can run for long enough to cause
audio dropouts and were most easily triggered
by heavy disk benchmarks (bonnie, iozone,
tiobench, dbench).

One typical VFS latency issue involved
shrinking the kernel’s directory cache when a
directory with thousands of files was deleted;
a typical VM latency problem would cause au-
dio dropouts at process exit when the kernel
unmapped all of that processes virtual mem-
ory areas with preemption disabled. The sync()
syscall also caused xruns if large amounts of
dirty data was flushed.

One significant process-context latency bug
was discovered quite accidentally, when the au-
thor was developing an ALSA driver that re-
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quired running separate JACK instances for
playback and capture. A large xrun would be
induced in the running JACK process when an-
other was started. The problem was identified
as mlockall() calling into make pages present()
which in turn called get user pages() causing
the entire address space to be faulted in with
preemption disabled.

Process-context latency problems were fortu-
nately the easiest to solve, by the addition of a
reschedule with lock break within the problem-
atic loop.

8 Process context - ext3fs

While ReiserFS 3.x did not get any latency
fixes as it was in maintenance mode, EXT3FS
did require several changes to achieve accept-
able scheduling latencies. At least three latency
problems in the EXT3 journalling code (a mech-
anism for preserving file system integrity in the
event of power loss without lengthy file sys-
tem checks at reboot) and one in the reserva-
tion code (a mechanism by which the filesystem
speeds allocation by preallocating space in an-
ticipation that a file will grow) were fixed by the
maintainers.

9 Softirq context - the struggle
continues

Having covered process and hardirq contexts we
come to the stickiest problem - softirqs (aka
”Bottom Halves”, known as ”DPCs” in the
Windows world - all the work needed to han-
dle an interrupt that can be delayed from the
hardirq, and run later, on another processor,
with interrupts enabled, etc). Full discussion of
softirqs is outside the scope (see (Love, 2003))
of this paper but an important feature of the
Linux implementation is that while softirqs nor-
mally run immediately after the hardirq that en-
abled them on the same processor in interrupt
context, under load, all softirq handling can be
offloaded to a ”softirqd” thread, for scalability
reasons.

An important side effect is that the kernel
can be trivially modified to unconditionally run
softirqs in process context, which results in a
dramatic improvement in latency if the audio
system runs at a higher priority than the softirq
thread(s). This is the approach taken by the -rt
kernel, and by many independent patches that
preceded it.

The mainline Linux kernel lacks this feature,
however, so minimizing scheduling latency re-

quires limiting the amount of time spent in
softirq context. Softirqs are used heavily by the
networking system, for example looping over a
list of packets delivered by the network adapter,
as well as SCSI and for kernel timers (Love,
2003). Fortunately the Linux networking stack
provides numerous sysctls that can be tuned to
limit the number of packets processed at once,
and the block IO fixes described elsewhere for
IDE also apply to SCSI, which does IO comple-
tion in softirq context.

Softirqs are the main source of excessive
scheduling latencies that, while rare, can still
occur in the latest 2.6 kernel as of this writ-
ing (2.6.16-rc5). Timer based route cache flush-
ing can still produce latencies over 10ms, and
is the most problematic remaining softirq as no
workaround seems to be available; however the
problem is known by the kernel developers and
a solution has been proposed (Dumazet, 2006).

10 Performance issues

The problems described so far mostly fit the
pattern of too much work being done at once in
some non-preemptible context and were solved
by doing the same work in smaller units. How-
ever several areas where the kernel was simply
inefficient were resolved, to the benefit of all
users.

One such problem was kallsyms lookup(), in-
voked in cases like printk(), which did a lin-
ear search over thousands of symbols, caus-
ing excessive scheduling latency. Paulo Mar-
ques solved this problem by rewriting kall-
syms lookup() to use a more efficient search al-
gorithm. The frequent invocation of SHATrans-
form() in non-preemptible contexts to add to
the entropy pool was another latency problem
solved by rewriting the code to be more efficient.

11 Non-kernel factors

The strangest latency problem identified was
found to have an origin completely outside the
kernel. Testing revealed that moving windows
on the desktop reliably caused JACK to report
excessive delays. This is a worse situation than
an xrun as it indicates the audio device stopped
producing/consuming data or a hardware level
timing glitch occurred, while an xrun merely
indicates that audio was available but JACK
was not scheduled in time to process it. The
problem disappeared when 2D acceleration was
disabled in the X configuration which pointed
clearly to the X display driver - on Linux all
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hardware access is normally mitigated by the
kernel except 2D XAA acceleration by the X
server.

The VIA Unichrome video card used in test-
ing has a command FIFO and a status register.
The status register tells the X server when the
FIFO is ready to accept more data. (Jones and
Regehr, 1999) describes certain Windows video
drivers which improve benchmark scores by ne-
glecting to check the status register before writ-
ing to the FIFO; the effect is to stall the CPU if
the FIFO was full. The symptoms experienced
were identical to (Jones and Regehr, 1999) - the
machine stalled when the user dragged a win-
dow. Communication with the maintainer of
the VIA unichrome driver (which had been sup-
plied by the vendor) confirmed that the driver
was in fact failing to check the status register
and was easily fixed.

12 The -rt kernel and the future

The above solutions all have in common that
they reduce scheduling latencies by minimiz-
ing the time the kernel spends with a spin-
lock held, with preemption manually disabled,
and in hard and soft IRQ contexts, but do not
change the kernels behavior regarding which
contexts are preemptible. Modulo a few re-
maining, known bugs, this approach is capable
of reducing the worst case scheduling latencies
to the 1-2ms range, which is adequate for au-
dio applications. Reducing latencies further re-
quired deep changes to the kernel and the rules
about when preemption is allowed. The -rt ker-
nel eliminates the spinlock problem by turning
them into mutexes, the softirq by the softirq
method previously described, and the hardirq
issue by creating a set of kernel threads, one per
interrupt line, and running all interrupt han-
dlers in these threads. These changes result in
a worst case scheduling latency close to 50 mi-
croseconds which approaches hardware limits.

13 Conclusions

One of the significant implications of the story
of low latency in kernel 2.6 is that I believe it
vindicates the controversial ”new kernel devel-
opment process” (Corbet, 2004) - it is hard to
imagine Linux 2.6 evolving into a world class au-
dio platform as rapidly and successfully as it did
under a development model that valued stabil-
ity over progress. Another lesson is that in op-
erating systems as in life, history repeats itself.
Much of the work done on Linux 2.6 to support

soft realtime applications, like IRQ threading,
was pioneered by Solaris engineers in the early
1990s (Vahalia, 1996).
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Abstract

LDAS (Low Delay Audio Streamer) is software for
transmitting full duplex high-quality multi-channel
audio with low end-to-end latency over IP networks.
It has been designed and implemented as a tool for
research into distributed multimedia interaction and
quality of service in telecommunications. LDAS runs
on Linux, using the ALSA sound drivers and li-
braries. It uses UDP as its transport protocol. A
flow control scheme is used to keep the sender and
receiver synchronised and to deal with transmission
errors. Tests have shown end-to-end latencies (from
analog input to analog output) down to around five
milliseconds over a minimal network.

Keywords

audio, streaming, latency, IP network

1 Introduction

The field of telecommunications is changing,
with new technologies making new services pos-
sible. One aspect of this is the increasing use
of various kinds of transmission of audio and
multimedia over packet-switched networks us-
ing the Internet Protocol (IP).

Related to this, ”Quality of Service” (QoS)
is a topic of current interest in telecommuni-
cations. Traditionally, this deals with technical
specifications and guarantees. A wider interpre-
tation may also take into account the quality of
service as experienced by the user. In this re-
spect, an increased quality of service may not
only be an increase in the quality of a given
service (like voice communication), but to im-
prove the user experience by offering a service
of inherently higher quality, something that is
not only better, but more. (An example might
be to replace a one-channel voice communica-
tion service with a voice communication service
with 3D-audio.)

There is an untapped potential for services
utilising audio and multimedia over IP that
would give a better quality of service, as expe-
rienced by the user. The ultimate telecommu-

nications system would enable one to achieve
virtual presence and true interaction between
the endpoints of the communication. Current
common systems, like internet telephony (Voice
over IP, VoIP) and video conferencing do not
fully achieve this. A primary aspect of this topic
is how such services should work, on a technical
level. Further, and perhaps even more interest-
ing, is how they may be used, and how the user
will experience them.

Our aim is therefore to explore and investi-
gate more advanced and demanding communi-
cation services, focusing on the audio side of
distributed multimedia interaction. The general
situation would be one where two acoustical sit-
uations are connected through the network in
such a way as to achieve transmission of the
complete acoustic environments. Examples of
such applications, and our immediate targets,
are ensemble playing and music performance
over the network, and transmission of various
kinds of 3D audio (binaural, Ambisonics, mul-
tichannel). This has been demonstrated in a
number of studies, e.g. (Woszczyk et al., 2005).

Latency is the most interesting and demand-
ing of the factors limiting these kinds of services.
Available data storage capacity, data transmis-
sion capacity (bandwidth) and processing ca-
pacity are all steadily increasing, with no hard
bounds in sight. Transmission time, however, is
fundamentally limited by the the speed of light.
And, as will be further discussed below, low la-
tency is in many cases important and necessary
in order to achieve interaction. In addition to
high quality overall, low latency should there-
fore be emphasised.

For our exploration, a tool suitable for such
services was needed. This tool should be capa-
ble of transmission of high quality, low latency
audio. It should also be open, to facilitate con-
trol over all aspects and parameters of the trans-
mission process. Several such applications ex-
ist, from the simple ones to the very advanced
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ones. For many of these, source code is not
accessible, making studies of their internals or
changing of their workings next to impossible.
Others do, in various ways, not meet our needs,
although StreamBD, used at CCRMA, (Chafe
et al., 2000), might have had adequate prop-
erties. The development of such a tool would
give valuable insights into the specific problems
associated with these topics, give full control
of all aspects of the tool and its usage and be
a good way to start the explorations. So, the
task of developing LDAS - the Low Delay Au-
dio Streamer, was undertaken, using previous
work done at NTNU (Strand, 2002) as a start-
ing point.

2 Requirements and specifications

The two immediate target applications are net-
worked ensemble playing and transmission of
acoustical environments. The first involves mu-
sicians at different locations, connected by a
network, performing music together. The sec-
ond involves the transmission of enough infor-
mation from one site to another to be able to
recreate the acoustic environment of the first
site at the second site in a satisfactorily manner.
The main requirements of these applications are
discussed below.

2.1 Audio quality
Audio quality should be high. For simplicity,
the lower limit for quality has been set equal
to that of an audio Compact Disc. This means
a sampling frequency of 44.1kHz (or 48kHz) or
higher, and a sample depth (word length) of at
least 16 bits for uncompressed PCM.

The number of channels available should be
at least two (which will allow for transmission of
stereo or binaural signals), but preferably eight
or more (which will allow for various kinds of
multi-channel and three-dimensional audio for-
mats like Ambisonics).

2.2 Latency considerations
Latency is important for interaction. In partic-
ular, it is known that excessive inter-musician
latency is detrimental to ensemble playing, one
of our target applications (Bargar et al., 1998).
The fundamental latency requirement is there-
fore that the latency should be so low that it will
not hinder successful ensemble playing across
the established connection.

Some investigations into what constitutes tol-
erable delay has been done, but few definite con-
clusions have been given. Experiments, using

hand-clapping as the musical signal, have found
an “optimal” delay (with respect to tempo sta-
bility) of 11.6 milliseconds (Chafe and Gurevich,
2004). Based upon these data and their own ex-
periences, (Woszczyk et al., 2005) suggest that
latencies of 20ms to 40ms are “easily tolerated”,
and that even higher latencies may be accept-
able after training and practice.

Experiments conducted at the acoustics
group at NTNU have concluded that latencies
lower than 20 milliseconds do not seem to influ-
ence the ensemble playing much, while latencies
above 20 milliseconds may may lead to a less
“tight” rhythm, with the two musicians not fol-
lowing each other as well (Winge, 2003). On the
other hand, (Lago and Kon, 2004) claims that
latencies up to at least 30 milliseconds should
be considered normal and in most situations ac-
ceptable, and that latencies of this order will
not impair musical performance. Further, in-
formal evidence, based upon the experience of
a number of practising musicians, indicates that
latencies of 30 ms and maybe up to 50ms may
be tolerable.

For comparison: Sound in air at room tem-
perature travels at approximately 345 meters
per second. This gives a latency of about three
milliseconds per meter. Two musicians two me-
ters apart will experience a delay of six millisec-
onds. The width of a typical sympony orchestra
on stage may be around 15 to 20 meters, cor-
responding to a latency between the outermost
musicians on the order of 50 milliseconds. (It
should be noted that an orchestra also has ex-
ternal synchronisation in the form of a conduc-
tor.)

Obviously, for networked ensemble playing,
network transmission time may make up a large
part of the total latency. (With factors like A/D
and D/A conversion, buffering in the sound
card, data processing and handling by applica-
tion and OS and travel time for sound waves in
air making up for the rest.) Whether a suffi-
ciently low latency is possible is therefore to a
large degree dependent upon the “network dis-
tance” between the participants.

Based upon the indications above, the oper-
ating requirement was set to have an end to
end latency (analog signal to analog signal) of
less than 20 milliseconds for transmission over
a campus-wide LAN. To avoid unnecessary la-
tency, it was decided that uncompressed audio
should be transferred. While expending effort
into keeping the latency low, it should be re-
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membered that latency requirements must be
balanced against the robustness of transmission.
This compromise should be tunable.

2.3 Network protocol

Using IP (Internet Protocol) as the network
layer protocol is a given, since the area for which
LDAS is intended is audio over IP.

The two main transport protocols used over
IP are TCP (Transmission Control Protocol)
and UDP (User Datagram Protocol). TCP pro-
vides a reliable, connection-oriented transmis-
sion mechanism. Lost packets are retransmit-
ted, and flow and congestion control is part of
the protocol. UDP is a connectionless protocol
with very limited delivery guarantees. Packets
sent via UDP may not arrive at the destination
at all, they may arrive out of order, or they may
arrive as duplicates. The only guarantee given
is that if a packet does arrive, its contents are in-
tact. UDP supports broadcasting and multicas-
ting (which TCP does not), but does not have
built in flow and congestion control. (Stevens
et al., 2004).

For networked ensemble playing, the reliabil-
ity of TCP is not called for. A low latency is
deemed more important than totally reliable de-
livery of all data. Some data loss may be accept-
able, and retransmission of lost packets may be
a waste of time and capacity, as they may well
be discarded due to arriving too late when they
finally arrive. Neither will TCP’s flow and con-
gestion control be the optimal way to rate-limit
LDAS traffic. Methods taking into account the
nature of the service, built into the application
itself, will be preferable. (Until flow control is
implemented in LDAS, LDAS traffic will not be
TCP-friendly. But, at least for the research pur-
poses and situations, this is acceptable.)

As multi-way communication is envisioned, it
is possible, maybe also probable, that LDAS
may be extended to multicast, for which UDP is
needed. As the distinguishing features of TCP
are not necessary for LDAS, not choosing TCP
as the transport protocol is not a disadvantage.
On the other hand, the multicast feature of
UDP may be essential. On the basis of this,
UDP was chosen as the transport protocol.

It is necessary for LDAS that the order of
packets be maintained and the relative place-
ment of packets in time be correct. This fea-
ture is not delivered by UDP. LDAS should
therefore implement its own protocol, on top
of UDP, to provide the necessary features for

packet stream tracking and control.
Alternative protocols are DCCP (Data-

gram Congestion Control Protocol, http://
www.icir.org/kohler/dcp/) and RTP (Real
Time Protocol, http://www.faqs.org/rfcs/
rfc3550.html). DCCP is intended as a sub-
stitute for UDP for applications like these, but
is still a work in progress. RTP sits on top of
UDP, and is a transport protocol for real time
applications. It was, however, found to be more
complex than needed for this case.

2.4 Synchronisation
It is mandatory that the sending and the re-
ceiving parts be kept synchronised, keeping the
latency as low and as constant as circumstances
will allow. To minimise the effects of net-
work transmission time jitter, the receiving part
should maintain a buffer of received audio data.
The amount of data to be held in this buffer
should be setable, so it can be balanced against
the latency requirements.

3 Implementation

The high-level system architecture is currently
a ”pairwise peer-to-peer” system, i.e. two equal
programs sending and receiving data to and
from each other.

The structure of the application is shown in
figure 1. There are three threads running in par-
allel, a recorder/sender, a receiver and a play-
back task. The recorder/sender thread is run-
ning independently of the two other threads,
while the receiver and the playback threads are
linked through a common data structure, the
receiver queue. All three threads are running
scheduled as SCHED FIFO tasks.

3.1 The data stream and the packet
format

Audio is a continuous signal, which is digitised
by the audio interface into a stream of samples.
It is, however, practical to handle chunks of the
stream as units when processing and transmit-
ting the data. The audio stream is therefore
divided into a series of application level pack-
ets.

This packet stream is the connection between
the sender and the receiver. The packet format
is quite simple. Each packet consists of one pe-
riod1 of audio data, as delivered from the au-
dio interface. (Currently, the ALSA interleaved
format is used.) To these data is appended a

1In the ALSA sense.
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Read audio data
from sound card

Build packet,
send to network

Process audio

Receive packet
from network

Enqueue packet

from enqueued data
Build audio period 

Write audio data
to sound card

Process audio

N+1 NN+2N+3

Figure 1: Application architecture and conceptual flowchart. Blue (straight, vertical) lines show
the flow of the audio data, red (curved) lines show program flow. From left to right, there is the
recorder/sender thread, the receiver thread and the playback thread. Audio is acquired and played
back via the audio interfaces, at the bottom of the figure, and sent to, and received from, the
network at the top of the figure. The square boxes at the bottom of the figure are, from left to
right, the input sound card buffer, the receiver queue and the output sound card buffer. The dashed
boxes indicates the possibility for additional processing, currently not present, of the audio data.

sequence number and a time stamp, as shown
in figure 2.

Positions in the audio stream are identified
by the sequence number of the packet and a
frame-level offset into the packet. Of particular
interest is the playback position kept by the re-
ceiver. This is the position of the data that is
“next in turn” to be sent to the playback sound
card.

3.2 The receiver queue
The receiver queue is the central data structure
of the program. In this queue, received pack-
ets are temporarily stored until their audio data
have been played back. (No copying of data
takes place during enqueuing. The queue is im-
plemented as an array of pointers to packets, ad-
dressed modulo the length of the array to give
a circular buffer.) The queue, containing the
packet corresponding to the playback position
and any more recent packets, acts as a sliding
window onto the incoming packet stream.

A primary purpose of the queue is to buffer
the incoming packet stream, absorbing the ef-
fects of network transmission time jitter. The
setting of the nominal length of the queue, i.e.
the number of audio periods we try to keep in
the queue, allows for the trading of latency for
robustness. More data in the queue will give
a higher latency, but also more leeway for the

occasional late arriving packet to still come in
time.

The queue, together with the packet format,
implicitly defines a simple protocol that makes
the application capable of handling the short-
comings of UDP. Packets are inserted into the
queue in correct order, according to their se-
quence numbers. Lost (or missing) packets are
detected, and dummy data (currently silence)
substituted in their place. Duplicate packets,
and packets arriving too late, are detected and
rejected. Altogether, this gives a data stream
that is ordered and without gaps.

The queue is further central in the synchro-
nisation of sender and receiver, as discussed be-
low.

3.3 Synchronisation and drift
adjustment

There are two kinds of synchronisation issues,
synchronisation on a large scale and drift ad-
justment. Both are handled in the receiver
queue.

The first, synchronisation, is handled by the
receiver thread. As mentioned above, the re-
ceiver queue is a sliding window onto the packet
stream. The purpose of the synchronisation is
to position this window correctly. This is done
by monitoring the sequence numbers of the in-
coming packets. A packet is said to be “early” if
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Audio data (one period) Seq. Num. Time stamp

Frame 1 Frame 2 Frame M

Ch. 1 sample Ch. 2 sample Ch. N sample

Figure 2: LDAS packet format, the payload of the UDP packet.

its sequence number is so high that it would fall
outside of the queue. If an early packet arrives,
this is a sign that the receiver is lagging, and the
queue is resynchronised. Resynchronisation re-
sets the queue, setting a new playback position,
so that the length of the queue, as measured
from the playback position to the end of the
queue (including the early packet) equals the
nominal queue length.

Similarly, “late” packets are packets arriving
after they should have been played back, i.e.
with a sequence number lower than the sequence
number corresponding to the current playback
position. From the number of recent late arriv-
ing packets, a “lateness factor” is computed. If
this value gets too high, the receiver is assumed
to be leading, and the receiver queue is resyn-
chronised.

Although nominally equal, the sampling fre-
quencies of the sound cards at the sending and
receiving ends will in practice differ slightly.
Over time, this difference will lead to more sam-
ples being produced than consumed, or vice
versa, and this aggregation or starvation of data
will cause the sender and the receiver to drift
apart. To compensate for this, more smoothly
than would be done by large scale synchronisa-
tion alone, the playback thread does drift ad-
justment. From the nominal queue length, an
upper and a lower limit is computed. If the
low pass filtered actual queue length increases
or decreases beyond those limits, single samples
are skipped or reused to adjust the rate of data
consumption as appropriate to counteract the
drift. There is at most one sample of adjust-
ment per period, giving a range of adjustment
that is inversely proportional to the period size.

A consequence of this adjustment is that the

audio periods sent to the sound card will in
general not correspond to those of the received
packets, but be built from audio data from more
than one packet.

4 Similar solutions

For comparison purposes, this section gives a
brief overview of other available open source
software similar to LDAS. The information is
gleaned from available documentation and vari-
ous other sources. Except for llcon, the authors
of this paper have not done actual experiments
with these other solutions.

Netjack (Hohn et al., 2006) is a mechanism
for transporting realtime audio over an IP Net-
work using UDP. It is fully integrated with Jack.
Full duplex transmission of uncompressed stereo
data between two computers is offered. Netjack
slaves one jackd to the other, and synchronises
the slave jack using the incoming packet data.
Which technique is used for the synchronisation
is not clear from the available documentation.

An earlier solution is jack.udp (Drape, 2005).
This is an udp packet transport that sends jack
audio data, using UDP, over local networks be-
tween two jack enabled computers. For correct
operation, jack.udp needs some form of external
synchronisation between the soundcards of the
computers.

The StreamBD software (SoundWIRE
Group, CCRMA, Stanford, 2002) may, among
other things, be used for transmission of audio
over a network. It uses ALSA or OSS audio
drivers, and provides multiples channels of
uncompressed audio. TCP is used for one
way transmission, UDP or non-guaranteed
variants of TCP for bidirectional transmission.
Whether, or how, synchronisation is achieved is
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not described in the available documentation.
The llcon (Fischer, 2006) software differs from

the rest in that it is aimed at situations with
limited bandwidth, like 256kbps DSL lines. It
may also connect more than two endpoints.
Endpoint clients connect to a central server,
which mixes all incoming signals and returns the
mix to the clients. At the clients, stereo is in-
put and mixed to one channel before sending the
data to the server. The sampling frequency is 24
kHz, and IMA-ADPCM coding, which gives a
coding delay of one sample, is used to compress
the audio data rate to 96 kbps.

5 Latency measurements

For initial testing and latency measurements of
LDAS, two PCs were used. PC-1 was equipped
with an Intel P4 CPU, PC-2 had an Intel P3
CPU at 1Ghz. The computers had 512 MB of
RAM each, and were equipped with M-Audio
Delta44 audio interfaces. Both computers were
running Linux set up for real time operation,
with 2.6.12 multimedia kernels and associated
setup from DeMuDi 1.2.0. (PC-2 was a regu-
lar DeMuDi installation, while PC-1 was “side-
graded” from Debian Sarge.)

The computers were connected via a switch
of the regular campus LAN. The network round
trip time, as reported by “ping” was 0.1 ms. For
the measurements, LDAS was version 0.1.1 plus
a small fix for a hard coded period size. Audio
transmission was two-channel full duplex, using
the ldas mate executable. PC-2 was controlled
via SSH logins from PC-1, with the correspond-
ing network traffic between the two computers
following the same network route as the LDAS
transmissions.

Latency measurements were done on one
channel, one way, using an impulse response
measurement system, a computer running the
WinMLS (Morset, 2004) measurement software.
Responses were measured from the analog in-
put of PC-1’s sound card to the analog output
of PC-2’s sound card. Several combinations of
period size and nominal receiver queue length
were tried. For each combination, six impulse
response measurements were taken. From the
impulse responses, the total latency through the
transmission chain was computed. The results
are given in table 1.

While measuring, audio from a CD player was
transmitted on the remaining channel from PC-
1 to PC-2, and also on both channels in the
opposite direction. The quality of the transmis-

Period Queue Mean Standard
size length latency deviation

A 128 3 15.2 0.8
B 128 1 11.0 0.8
C 128 0.1 8.2 0.6
D 64 1 5.8 0.4
E 64 0.1 4.9 0.4
F 32 0.1 3.1 0.2
G 16 1 2.6 0.1

Table 1: Total latency for audio transmission
with LDAS. The latency is measured from ana-
log input to analog output for various combi-
nations (marked A to G) of audio period size
and nominal receiver queue length. The latency
mean value and standard deviation are given in
milliseconds. Period size is measured in frames
(samples), and the nominal length of the re-
ceiver queue in periods. Sampling frequency is
48kHz.

sion was subjectively evaluated by monitoring
the received audio signals (mostly one direction
at a time) for audible drop-outs and other forms
of distortion or quality reduction. For the trans-
mission from PC-1 to PC-2, combinations A, B
and D were robust, with no artifacts noted. For
combinations C and E, a few distortions (over
the course of a few minutes) were noted. The
distortions had the character of brief crackles.
Transmission from PC-2 to PC-1 seemed some-
what less robust. Infrequent distortions were
noted for combination D, and more frequent dis-
tortions for E, F and G. Especially for the lower
latency setups, transmission from PC-2 to PC-1
was susceptible to other use of PC-1, with e.g.
a “find /usr” with output to a terminal win-
dow leading to quite a bit of “stuttering” in the
transmitted audio.

6 Conclusions

A software tool for transmission of high-quality
multichannel audio over IP networks has been
designed and implemented. As one target appli-
cation of the tool is networked ensemble play-
ing, emphasis has been placed on achieving low
latency. Testing has shown that the tool is capa-
ble of achieving robust full duplex transmission
while keeping latencies below our stated goal
of 20 milliseconds on a local area network. If
small transmission artifacts are accepted, even
lower latencies may be obtained. While not fin-
ished, the software is in a state where it may be
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used for experimental work and research into
user experienced quality of service in telecom-
munications.
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8 Availability

The LDAS software has been released under
the GNU General Public License. It may
be downloaded from http://www.q2s.ntnu.
no/~asbjs/ldas/ldas.html.
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Abstract

swonder3Dq is a software tool to auralise three di-
mensional objects with Wave Field Synthesis. It
presents a new approach to model the radiation char-
acteristics of sounding objects.
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1 Introduction

Wave Field Synthesis (WFS) is an interesting
method for spatialisation of electronic music.
Its main advantage is that it has no sweet spot,
but instead a large listening area, making the
technology attractive for concert situations.

Yet, whenever acoustic instruments are com-
bined with electroacoustic sounds in concerts,
a common problem is that the electroacoustic
part tends to lack depth and extension in com-
parison with the sound from the acoustic in-
struments. Misdariis (1) and Warusfel (2) have
proposed special 3D loudspeaker arrays to simu-
late different radiation characteristics. A prob-
lem with this technique is that the object itself
is static; a movement of the source can only be
created by physically moving the loudspeaker
array.

In current Wave Field Synthesis applications
there are only solutions for monopole point
sources and plane waves. There are some re-
ports of ad hoc solutions to simulate larger
sources, such as the Virtual Panning Spots (3)
and the auralisation of a grand piano (4) by
using a few point sources. Currently, work is
done on implementing radiation characteristics
for point sources (5). By definition radiation
characteristics are only applicable at a certain
distance from the object modelled. Since WFS
sources can get very close, it makes sense to look
for a general solution for auralising arbitrarily
shaped sources.

2 Theory

2.1 Source model

The wave field of a sounding object can be ap-
proximated by superposition of the wave fields
of a number of point sources. The locations of
these point sources and the number can be cho-
sen arbitrarily, but it make sense to choose the
locations on the surface of the object. This sep-
arates the calculation of the vibration of the ob-
ject itself (which can be done with various meth-
ods, such as finite element methods or modal
synthesis) from the calculation of the radiation
of the sound from the object into the air.

For a correct calculation of the radiated sound
field, the vibration of the surface must be spa-
tially sampled. Here there is the danger of un-
dersampling (6); this danger is twofold: first,
spatial amplitude variations of the surface vi-
bration may be lost, and secondly, depending
on the frequency content of the sound, spatial
aliasing may occur in a similar way as for the
WFS speaker array itself.

In practice the sound emitted from different
points on the object’s surface will be correlated.
For a practical implementation it is useful to
assume that for a point Ψ on the surface:

SΨ(~rΨ, φ, θ, ω) = S(ω)G(~rΨ, φ, θ, ω) (1)

i.e. from each point source that is part of the
distribution a source signal S(ω) filtered with
G is emitted (G depending on the location ~rΨ

of the point source Ψ, the angular frequency
ω of the sound and the direction angles φ and
θ). Applied to the reproduction of electronic
music, this will allow a composer to determine
the filter characteristics of his source object and
the sound signal emitted by the source indepen-
dently. Thus, the resulting filtering function for
each speaker can be determined in advance and
the signal input can be convolved in realtime
with this filter.
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Figure 1: The stationary point (xm, y0, 0) lies
on the cross-section of the line m (in plane S)
and the plane through Ψ and the reference line
l.

2.2 Adaptation of the WFS-operator

For WFS reproduction of a 3-dimensional
source object the commonly used 21

2
D-operator

(7) is not sufficient as its derivation only sources
in the same plane as the array and reference line
are taken into account. In (8) the WFS operator
for points outside of the horizontal plane was de-
rived, starting from the Rayleigh integrals. The
main difference from the 21

2
D-operator is the

calculation of the stationary point:

y0 = yR + (yΨ − yR)
zR

zΨ + zR

(2)

where zR is the z-coordinate of the receiver
and zΨ of the source point (see also figure 1).
The driver function of a speaker for the contri-
bution of one monopole source point becomes:

Q(x, ω) =

S(ω)

√

jk

2π

√

∆r0

∆r0 + r0

cos(φ0)
e−jkr0

√
r0

(3)

the speaker being assumed to be on the x-
axis.

It should be noted that the actual elevation
will not be heard, when the elevated source is
played back by the WFS-array. The elevated
points are mainly of interest, because their con-
tributions will interfere with those of the points
in the horizontal plane.

Figure 2: Snapshot of the graphical user inter-
face of swonder3Dq

3 Implementation

The software enables to calculate the filters for
WFS reproduction for several sound objects.
The objects themselves are defined by their geo-
metrical data and the radiation filters at several
points on the surface. Objects can be positioned
and given different orientations in space. Figure
2 is a snapshot of the graphical user interface.
There is an OpenGL viewer included to look at
the object. The user can choose between defin-
ing filters of each node, or choose a multichan-
nel audiofile which has the sound for each node
(e.g. calculated with Modalys (9)). The pro-
gram then calculates the WFS operators or the
loudspeaker signals and saves them to disk.

A second part of the software enables the user
to load a project and listen to the desired object
on the desired location with the desired orienta-
tion. This part of the software can be controlled
with OSC. BruteFIR (10) is used as the convo-
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Figure 3: Graphical display of an object with
mview

lution engine.

3.1 Geometry

There are a multitude of programs and libraries
available for manipulating and visualising 3D
data. The GTS-library (11) encompasses many
functions to read, write and work with meshes.
A disadvantage of this library is that the points
on the mesh (the vertices) are not ordered or
tagged while they are loaded, so it is not possi-
ble to connect the data for the radiation filters
to them.

In the program mview (12) a lot of methods
for working with meshes were already imple-
mented and with only a few additions to im-
plement the filter definition per source point, it
was included into swonder3Dq for the graphical
display of the objects.

GeomView (13) was used as a second viewer
to view the whole scene: the WFS speaker array
as well as several sounding objects. GeomView
is used as an external program, interfaced via
stdin and stdout.

3.2 Filter definition and calculation

There is a simple graphical representation of the
frequency response of the filter, where the user
can define breakpoints (figure 4). The filter set-
tings can be copied between source points and
there is an interaction between the picked trian-
gle and its corner points (which can be selected
in the main gui) and the current source point

Figure 4: Snapshot of the dialog to define a filter
for a point on the source object surface

for which a filter is defined. It is also possible
to load filters from file.

The filter is then calculated based on the de-
fined breakpoints with a method as described in
(14)1. For the fast fourier transform the FFTW
Library is used (15).

3.3 Refinement of the surface

To make the discretisation distance smaller, an
algorithm is needed to calculate more points on
the object surface. A simple method (partly
taken from the GTS Library) is the midvertex
insertion method. On each edge of a triangle, a
point is added in the middle to divide the edge
in two. Then, every midpoint is connected to
those of the other edges (figure 5). This method
can be applied more than once, to create a fine
raster of points. The aliasing frequency (6) can
be calculated by finding the longest edge in the
mesh and calculate the corresponding aliasing
frequency.

Secondly the filter for the newly calculated
points needs to be determined. This is done
by an average of the filter of the neighbour-
ing points, using an inverse distance weighting
method (16) to determine the contribution of
each point:

1Chapter 17, pages 297-300
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Figure 6: Averaging of the filter values. On
the left is shown from which point the average
is taken: × is the new point, • are the neigh-
bourpoints. On the left is shown how the break-
points are added when averaging.

Zj =

∑n
i=1

Zi

h
β
ij

∑n
i=1

1

h
β
ij

(4)

Zj is the value of the new point j, Zi of the
neighbour point i, hij the distance from point i

to j, and β a factor that defines the weighting
of the distance, usually set to β = 2. In this
case the factor β can be interpreted as a kind
of measure how well the sound is propagated
through the material of the object.

The averaging between two filters is calcu-
lated as follows (see also figure 6): for each
breakpoint from either filter the corresponding
value on that frequency value is calculated for
the other filter. The new filter then has a break-
point value at that frequency value, which is an
average of the two breakpoints of the two fil-
ters. The average is taken from the real and
imaginary parts of the coefficients.

3.4 3D WFS Calculation

Steps in the calculation of the WFS filters (for
each object, at each location specified):

1. Per source point:

• Check: is the source point audible (vis-
ible) for the loudspeaker?

• Calculation of delay and volume factor
according to the WFS operator

• Convolution of the WFS-delay and
volume with the filter for that source
point

2. Addition of all filters of the source for each
loudspeaker

3. Save filter to disk

As the software is still in an experimental
state, there is a choice between defining the
source points as monopoles or as dipoles. In
the case of a dipole, the main axis of radiation
is in the direction of the normal (pointing out-
wards) on the surface; in the case of points on
the corners of triangles which are not on the
same plane, this normal is an average of the
normals of the triangles it is a corner point of.

When a source point is at the back side of
the object, a direct path of the sound to the
loudspeaker is not possible and this source point
should not be taken into account. Diffraction of
sound waves around the object is neglected in
this case.

4 First tests

Preliminary listening tests on a frontal WFS-
speaker array of 24 loudspeakers (at 12.5cm
distance) show that this approach does give a
stronger spatial impression of a sound source.

However, it became apparent that the neglec-
tion of diffraction cannot be allowed. As for
different speakers, different points of the object
will be at the backside (figure 7), sound will
arrive from speakers to parts of the listening
area that should be obscured when neglecting
diffraction. Thus some sense of diffraction is
created, but at a much later stage than should

b

b

b

b

b

b

b

b

b source

P

sound arrives here

Figure 7: Illustration of the audibility problem.
The point P is only audible for the gray speakers
on the right, yet the sound from these speakers
will arrive on the left side of the listening area.
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be. We will need to find a different approach in
order to take the diffraction of the sound around
the object into account properly.

5 Conclusions and future work

An extension of the WONDER software (17)
was presented which enables the calculation of
WFS auralisation for complex sound sources.
While its first aim is to be used for WFS au-
ralisation, several concepts introduced could be
used in other 3D audio applications, such as bin-
aural representation.

Further research will be done on how to take
the diffraction of waves around objects into ac-
count, before implementing that feature. Fu-
ture work will include listening experiments, as
well as doing usability tests by working with
composers using the software.
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Abstract
Faust is a functional programming language for real-
time signal processing and synthesis that targets
high-performance signal processing applications and
audio plugins. The paper gives a brief introduction
to Faust and discusses its interfaces to Q, a general-
purpose functional programming language, and Su-
perCollider, an object-oriented sound synthesis lan-
guage and engine.
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1 Introduction

Faust is a programming language for real-time
signal processing and synthesis that targets
high-performance signal processing applications
and audio plugins. This paper gives a brief in-
troduction to Faust, emphasizing practical ex-
amples rather than theoretic concepts which can
be found elsewhere (Orlarey et al., 2004).

A Faust program describes a signal proces-
sor, a DSP algorithm that transforms input
signals into output signals. Faust is a func-
tional programming language which models sig-
nals as functions (of time) and DSP algorithms
as higher-order functions operating on signals.
Faust programs are compiled to efficient C++
code which can be included in C/C++ appli-
cations, and which can also be executed ei-
ther as standalone programs or as plugins in
other environments. In particular, in this pa-
per we describe Faust’s interfaces to Q, an in-
terpreted, general-purpose functional program-
ming language based on term rewriting (Gräf,
2005), and SuperCollider (McCartney, 2002),
the well-known object-oriented sound synthesis
language and engine.

2 Faust

The programming model of Faust combines a
functional programming approach with a block-

diagram syntax. The functional programming
approach provides a natural framework for sig-
nal processing. Digital signals are modeled as
discrete functions of time, and signal processors
as second order functions that operate on them.
Moreover Faust block-diagram composition op-
erators, used to combine signal processors to-
gether, fit in the same picture as third order
functions.

Faust is a compiled language. The compiler
translates Faust programs into equivalent C++
programs. It uses several optimization tech-
niques in order to generate the most efficient
code. The resulting code can usually compete
with, and sometimes outperform, DSP code di-
rectly written in C. It is also self-contained and
doesn’t depend on any DSP runtime library.

Thanks to specific architecture files, a single
Faust program can be used to produce code for a
variety of platforms and plugin formats. These
architecture files act as wrappers and describe
the interactions with the host audio and GUI
system. Currently more than 8 architectures
are supported (see Table 1) and new ones can
be easily added.

alsa-gtk.cpp ALSA application
jack-gtk.cpp JACK application
sndfile.cpp command line application
ladspa.cpp LADSPA plugin
max-msp.cpp Max MSP plugin
supercollider.cpp Supercollider plugin
vst.cpp VST plugin
q.cpp Q language plugin

Table 1: The main architecture files available
for Faust

In the following subsections we give a short
and informal introduction to the language
through two simple examples. Interested read-
ers can refer to (Orlarey et al., 2004) for a more
complete description.
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2.1 A simple noise generator

A Faust program describes a signal processor
by combining primitive operations on signals
(like +,−, ∗, /,√, sin, cos, . . .) using an algebra
of high level composition operators (see Table
2). You can think of these composition opera-
tors as a generalization of mathematical func-
tion composition f ◦ g.

f ∼ g recursive composition
f , g parallel composition
f : g sequential composition
f <: g split composition
f :> g merge composition

Table 2: The five high level block-diagram com-
position operators used in Faust

A Faust program is organized as a set of
definitions with at least one for the keyword
process (the equivalent of main in C).

Our noise generator example noise.dsp only
involves three very simple definitions. But it
also shows some specific aspects of the language:

random = +(12345) ~ *(1103515245);
noise = random/2147483647.0;
process = noise * checkbox("generate");

The first definition describes a (pseudo) ran-
dom number generator. Each new random num-
ber is computed by multiplying the previous one
by 1103515245 and adding to the result 12345.

The expression +(12345) denotes the op-
eration of adding 12345 to a signal. It is
an example of a common technique in func-
tional programming called partial application:
the binary operation + is here provided with
only one of its arguments. In the same way
*(1103515245) denotes the multiplication of a
signal by 1103515245.

The two resulting operations are recursively
composed using the ∼ operator. This opera-
tor connects in a feedback loop the output of
+(12345) to the input of *(1103515245) (with
an implicit 1-sample delay) and the output of
*(1103515245) to the input of +(12345).

The second definition transforms the random
signal into a noise signal by scaling it between
-1.0 and +1.0.

Finally, the definition of process adds a simple
user interface to control the production of the
sound. The noise signal is multiplied by a GUI
checkbox signal of value 1.0 when it is checked
and 0.0 otherwise.

2.2 Invoking the compiler

The role of the compiler is to translate Faust
programs into equivalent C++ programs. The
key idea to generate efficient code is not to com-
pile the block diagram itself, but what it com-
putes.

Driven by the semantic rules of the language
the compiler starts by propagating symbolic sig-
nals into the block diagram, in order to discover
how each output signal can be expressed as a
function of the input signals.

These resulting signal expressions are then
simplified and normalized, and common subex-
pressions are factorized. Finally these expres-
sions are translated into a self contained C++
class that implements all the required computa-
tion.

To compile our noise generator example we
use the following command :

$ faust noise.dsp

This command generates the C++ code
in Figure 1. The generated class con-
tains five methods. getNumInputs() and
getNumOutputs() return the number of input
and output signals required by our signal pro-
cessor. init() initializes the internal state of
the signal processor. buildUserInterface()
can be seen as a list of high level commands,
independent of any toolkit, to build the user
interface. The method compute() does the ac-
tual signal processing. It takes 3 arguments: the
number of frames to compute, the addresses of
the input buffers and the addresses of the out-
put buffers, and computes the output samples
according to the input samples.

The faust command accepts several options
to control the generated code. Two of them
are widely used. The option -o outputfile spec-
ifies the output file to be used instead of the
standard output. The option -a architecturefile
defines the architecture file used to wrap the
generate C++ class.

For example the command faust -a q.cpp
-o noise.cpp noise.dsp generates an exter-
nal object for the Q language, while faust -a
jack-gtk.cpp -o noise.cpp noise.dsp gen-
erates a standalone Jack application using the
GTK toolkit.

Another interesting option is -svg that gen-
erates one or more SVG graphic files that rep-
resent the block-diagram of the program as in
Figure 2.
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class mydsp : public dsp
{
private:

int R0_0;
float fcheckbox0;

public:

virtual int getNumInputs() {
return 0;

}
virtual int getNumOutputs() {
return 1;

}
virtual void init(int samplingFreq) {
fSamplingFreq = samplingFreq;
R0_0 = 0;
fcheckbox0 = 0.0;

}
virtual void buildUserInterface(UI* ui) {
ui->openVerticalBox("faust");
ui->addCheckButton("generate",

&fcheckbox0);
ui->closeBox();

}
virtual void compute (int count,

float** input, float** output) {
float* output0; output0 = output[0];
float ftemp0 = 4.656613e-10f*fcheckbox0;
for (int i=0; i<count; i++) {
R0_0 = (12345 + (1103515245 * R0_0));
output0[i] = (ftemp0 * R0_0);

}
}

};

Figure 1: The C++ implementation code of the
noise generator produced by the Faust compiler

2.3 The Karplus-Strong algorithm
Karplus-Strong is a well known algorithm first
presented by Karplus and Strong in 1983
(Karplus and Strong, 1983). Whereas not com-
pletely trivial, the principle of the algorithm
is simple enough to be described in few lines
of Faust, while producing interesting metallic
plucked-string and drum sounds.

The sound is produced by an impulse of noise
that goes into a resonator based on a delay line
with a filtered feedback. The user interface con-
tains a button to trigger the sound production,
as well as two sliders to control the size of both
the resonator and the noise impulse, and the
amount of feedback.

2.3.1 The noise generator
We simply reuse here the noise generator of the
previous example (subsection 2.1).

random = +(12345) ~ *(1103515245);

Figure 2: Graphic block-diagram of the noise
generator produced with the -svg option

noise = random/2147483647.0;

2.3.2 The trigger
The trigger is used to transform the signal de-
livered by a user interface button into a pre-
cisely calibrated control signal. We want this
control signal to be 1.0 for a duration of exactly
n samples, independentely of how long the but-
ton is pressed.

impulse(x) = x - mem(x) : >(0.0);
decay(n,x) = x - (x>0.0)/n;
release(n) = + ~ decay(n);
trigger(n) = button("play") : impulse

: release(n) : >(0.0);

For that purpose we first transforms the but-
ton signal into a 1-sample impulse correspond-
ing to the raising front of the button signal.
Then we add to this impulse a kind of release
that will decrease from 1.0 to 0.0 in exactly
n samples. Finally we produce a control sig-
nal which is 1.0 when the signal with release is
greater than 0.0.

All these steps are combined in a four stages
sequential composition with the operator ’:’.
2.3.3 The resonator
The resonator uses a variable delay line imple-
mented using a table of samples. Two consecu-
tive samples of the delay line are averaged, at-
tenuated and fed back into the table.

index(n) = &(n-1) ~ +(1);
delay(n,d,x)= rwtable( n, 0.0, index(n),

x, (index(n)-int(d))&(n-1) );
average(x) = (x+mem(x))/2;
resonator(d,a) = (+ : delay(4096, d-1))

~ (average : *(1.0-a));
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2.3.4 Putting it all together
The last step is to put all the pieces together
in a sequential composition. The parameters of
the trigger and the resonator are controlled by
two user interface sliders.

dur = hslider("duration",128,2,512,1);
att = hslider("attenuation",

0.1,0,1,0.01);
process = noise

: *(trigger(dur))
: resonator(dur,att);

A screen shot of the resulting application
(compiled with the jack-gtk.cpp architecture)
is reproduced in Figure 3. It is interesting to
note that despite the fact that the duration
slider is used twice, it only appears once in the
user interface. The reason is that Faust enforces
referential transparency for all expressions, in
particular user interface elements. Things are
uniquely and unequivocally identified by their
definition and naming is just a convenient short-
cut. For example in the following program,
process always generate a null signal:

foo = hslider("duration", 128, 2, 512, 1);
faa = hslider("duration", 128, 2, 512, 1);
process = foo - faa;

Figure 3: Screenshot of the Karplus-Strong ex-
ample generated with the jack-gtk.cpp archi-
tecture

3 Faust and Q

Faust is tailored to DSP programming, and
as such it is not a general-purpose program-
ming language. In particular, it does not by
itself have any facilities for other tasks typi-
cally encountered in signal processing and syn-
thesis programs, such as accessing the operating
system environment, real-time processing of au-
dio and MIDI data, or presenting a user inter-
face for the application. Thus, as we already

discussed in the preceding section, all Faust-
generated DSP programs need a supporting in-
frastructure (embodied in the architecture file)
which provides those bits and pieces.

One of the architectures included in the Faust
distribution is the Q language interface. Q
is an interpreted functional programming lan-
guage which has the necessary facilities for do-
ing general-purpose programming as well as soft
real-time processing of MIDI, OSC a.k.a. Open
Sound Control (Wright et al., 2003) and au-
dio data. The Q-Faust interface allows Faust
DSPs to be loaded from a Q script at runtime.
From the perspective of the Faust DSP, Q acts
as a programmable supporting environment in
which it operates, whereas in Q land, the DSP
module is used as a “blackbox” to which the
script feeds chunks of audio and control data,
and from which it reads the resulting audio out-
put. By these means, Q and Faust programs can
be combined in a very flexible manner to im-
plement full-featured software synthesizers and
other DSP applications.

In this section we give a brief overview of
the Q-Faust interface, including a simple but
complete monophonic synthesizer example. For
lack of space, we cannot give an introduction
to the Q language here, so instead we refer
the reader to (Gräf, 2005) and the extensive
documentation available on the Q website at
http://q-lang.sf.net.

3.1 Q module architecture
Faust’s side of the Q-Faust interface consists of
the Q architecture file, a little C++ code tem-
plate q.cpp which is used with the Faust com-
piler to turn Faust DSPs into shared modules
which can be loaded by the Q-Faust module at
runtime. This file should already be included in
all recent Faust releases, otherwise you can also
find a copy of the file in the Q-Faust distribution
tarball.

Once the necessary software has been in-
stalled, you should be able to compile a Faust
DSP to a shared module loadable by Q-Faust
as follows:

$ faust -a q.cpp -o mydsp.cpp mydsp.dsp
$ g++ -shared -o mydsp.so mydsp.cpp

Note: If you want to load several different
DSPs in the same Q script, you have to make
sure that they all use distinct names for the
mydsp class. With the current Faust version this
can be achieved most easily by just redefining
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mydsp, to whatever class name you choose, dur-
ing the C++ compile stage, like so:

$ g++ -shared -Dmydsp=myclassname
-o mydsp.so mydsp.cpp

3.2 The Q-Faust module
The compiled DSP is now ready to be used in
the Q interpreter. A minimal Q script which
just loads the DSP and assigns it to a global
variable looks as follows:

import faust;
def DSP = faust_init "mydsp" 48000;

The first line of the script imports Q’s faust
module which provides the operations to instan-
tiate and operate Faust DSPs. The faust_init
function loads a shared module (mydsp.so in
this example, the .so suffix is supplied au-
tomatically) and returns an object of Q type
FaustDSP which can then be used in subse-
quent operations. The second parameter of
faust_init, 48000 in this example, denotes the
sample rate in Hz. This can be an arbitrary in-
teger value which is available to the hosted DSP
(it is up to the DSP whether it actually uses this
value in some way).

In the following examples we assume that you
have actually loaded the above script in the Q
interpreter; the commands below can then be
tried at the interpreter’s command prompt.

The faust_info function can be used to de-
termine the number of input/output channels as
well as the “UI” (a data structure describing the
available control variables) of the loaded DSP:

==> def (N,M,UI) = faust_info DSP

To actually run the DSP, you’ll need some au-
dio data, encoded using 32 bit (i.e., single pre-
cision) floating point values as a byte string. (A
byte string is a special kind of data object which
is used in Q to represent arbitrary binary data,
such as a C vector with audio samples in this
case.) Suppose you already have two channels
of audio data in the IN1 and IN2 variables and
the DSP has 2 input channels, then you would
pass the data through the DSP as follows:

==> faust_compute DSP [IN1,IN2]

This will return another list of byte strings,
containing the 32 bit float samples produced by
the DSP on its output channels, being fed with
the given input data.

Some DSPs (e.g., synthesizers) don’t actually
take any audio input, in this case you just spec-
ify the number of samples to be generated in-
stead:

==> faust_compute DSP 1024

Most DSPs also take additional control in-
put. The control variables are listed in the UI
component of the faust_info return value. For
instance, suppose that there is a “Gain” param-
eter listed there, it might look as follows:

==> controls UI!0
hslider <<Ref>> ("Gain",1.0,0.0,10.0,0.1)

The second parameter of the hslider con-
structor indicates the arguments the control
was created with in the .dsp source file (see
the Faust documentation for more details on
this). The first parameter is a Q reference
object which points to the current value of
the control variable. The reference can be ex-
tracted from the control description with the
control_ref function and you can then change
the value with Q’s put function before invok-
ing faust_compute (changes of control vari-
ables only take effect between different invoka-
tions of faust_compute):

==> def GAIN = control_ref (controls UI!0)

==> put GAIN 2.0

3.3 Monophonic synthesizer example
For a very simple, but quite typical and fully
functional example, let us take a look at the
monophonic synthesizer program in Figure 4.
It basically consists of two real-time threads:
a control loop which takes MIDI input and
changes the synth DSP’s control variables ac-
cordingly, and an audio loop which just pulls
audio data from the DSP at regular intervals
and outputs it to the audio interface. The Faust
DSP we use here is the simple additive synth
shown in Figure 5.

The header section of the Q script imports the
necessary Q modules and defines some global
variables which are used to access the MIDI
input and audio output devices as well as the
Faust DSP. It also extracts the control variables
from the Faust DSP and stores them in a dictio-
nary, so that we can finally assign the references
to a corresponding collection of global variables.
These variables are then used in the control loop
to set the values of the control variables.
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import audio, faust, midi;

def (_,_,_,_,SR) = audio_devices!AUDIO_OUT,
SR = round SR, BUFSZ = 256,
IN = midi_open "Synth",
_ = midi_connect (midi_client_ref

"MidiShare/ALSA Bridge") IN,
OUT = open_audio_stream AUDIO_OUT PA_WRITE

(SR,1,PA_FLOAT32,BUFSZ),
SYNTH = faust_init "synth" SR,
(N,M,UI) = faust_info SYNTH, CTLS = controls UI,
CTLD = dict (zip (map control_label CTLS)

(map control_ref CTLS));

def [FREQ,GAIN,GATE] =
map (CTLD!) ["freq","gain","gate"];

/***********************************************/

freq N = 440*2^((N-69)/12);
gain V = V/127;

process (_,_,_,note_on _ N V)
= put FREQ (freq N) ||
put GAIN (gain V) ||
put GATE 1 if V>0;

= put GATE 0 if freq N = get FREQ;

midi_loop = process (midi_get IN) || midi_loop;

audio_loop = write_audio_stream OUT
(faust_compute SYNTH BUFSZ!0) ||
audio_loop;

/***********************************************/

def POL = SCHED_RR, PRIO = 10;
realtime = setsched this_thread POL PRIO;

synth = writes "Hit <CR> to stop: " ||
reads || ()

where H1 = thread (realtime || midi_loop),
H2 = thread (realtime || audio_loop);

Figure 4: Q script for the monophonic synth
example

The second section of the code contains the
definitions of the control and audio loop func-
tions. It starts out with two helper functions
freq and gain which are used to map MIDI
note numbers and velocities to the correspond-
ing frequency and gain values. The process
function (not to be confused with the process
“main” function of the Faust program!) does
the grunt work of translating an incoming MIDI
event to the corresponding control settings. In
this simple example it does nothing more than
responding to note on and off messages (as
usual, a note off is just a note on with veloc-
ity 0). The example also illustrates how MIDI

import("music.lib");

// control variables

vol = nentry("vol", 0.3, 0, 10, 0.01);

attk = nentry("attack", 0.01, 0, 1, 0.001);
decy = nentry("decay", 0.3, 0, 1, 0.001);
sust = nentry("sustain", 0.5, 0, 1, 0.01);
rels = nentry("release", 0.2, 0, 1, 0.001);

freq = nentry("freq", 440, 20, 20000, 1);
gain = nentry("gain", 1, 0, 10, 0.01);
gate = button("gate");

// simple monophonic synth

smooth(c) = *(1-c) : +~*(c);

voice = gate : adsr(attk, decy, sust, rels) :
*(osci(freq)+0.5*osci(2*freq)+
0.25*osci(3*freq)) :

*(gain : smooth(0.999));

process = vgroup("synth", voice : *(vol));

Figure 5: Faust source for the monophonic
synth example

messages are represented as an “algebraic” data
type in Q, and how the note and velocity infor-
mation is extracted from this data using “pat-
tern matching.” In the case of a note on mes-
sage we change the FREQ and GAIN of the single
synth voice accordingly and then set the GATE
variable to 1, to indicate that a note is play-
ing. For a note off message, we simply reset the
GATE variable to 0; in the DSP, this triggers the
release phase of the synth’s ADSR envelop.

The process function is invoked repeat-
edly during execution of midi_loop. The
audio_loop function just keeps reading the au-
dio output of the DSP and sends it to the audio
output stream. The two loops are to be exe-
cuted asynchronously, in parallel. (It is worth
noting here that the necessary protection of
shared data, i.e., the control variable references,
is done automatically behind the scenes.)

The third section of the script contains the
main entry point, the synth function which
kicks off two real-time threads running the
midi_loop and audio_loop functions and then
waits for user input. The function returns a
“void” () value as soon as the user hits the car-
riage return key. (At this point the two thread
handles H1 and H2 are garbage-collected imme-
diately and the corresponding threads are thus
terminated automatically, so there is no need to
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Figure 6: QFSynth program

explicitly cancel the threads.)
Of course the above example is rather limited

in functionality (that shouldn’t come as a big
surprise as it is just about one page of Faust
and Q source code). A complete example of
a Faust-based polyphonic software synthesizer
with GUI can be found in the QFSynth appli-
cation (cf. Figure 6) which is available as a sep-
arate package from the Q website.

3.4 Q, Faust and SuperCollider

The Q-Faust interface provides a direct way to
embed Faust DSPs in Q programs, which is use-
ful for testing DSPs and for simple applications
with moderate latency requirements. For more
elaborate applications it is often convenient to
employ a dedicated software synthesis engine
which does the grunt work of low-latency con-
trol data and audio processing. This is where
Q’s OSC-based SuperCollider interface (Gräf,
2005) comes in handy. Using SuperCollider’s
Faust plugin interface, described in the next sec-
tion, Faust DSPs can also be loaded into the
SuperCollider sound server and are then ready
to be operated from Q programs via OSC.

4 Faust and SuperCollider3

SuperCollider3 (McCartney, 2002) is a real-
time synthesis and composition framework,
divided into a synthesis server application
(scsynth) and an object-oriented realtime lan-
guage (sclang). Any application capable
of sending OpenSoundControl (Wright et al.,

2003) messages can control scsynth, one no-
table example being Q (section 3).

Correspondingly, support for plugins gener-
ated by Faust is divided into an interface to
scsynth and sclang, respectively.

4.1 Interface to scsynth
In order to compile a Faust plugin for the Su-
perCollider3 synthesis architecture, you have to
use the corresponding architecture file:

$ faust -a supercollider.cpp \
-o noise.cpp noise.dsp

For compiling the plugin on Linux you
can use the provided pkg-config specification,
which is installed automatically when you pass
DEVELOPMENT=yes to scons when building Su-
perCollider:

$ g++ -shared -o noise.so \
‘pkg-config --cflags libscsynth‘ \
noise.cpp

The resulting plugin should be put in a
place where scsynth can find it, e.g. into
~/share/SuperCollider/Extensions/Faust
on Linux.

Unit-generator plugins in SuperCollider are
referenced by name on the server; the plu-
gin generated by Faust currently registers itself
with the C++ filename sans extension. In fu-
ture versions of Faust the plugin name will be
definable in the process specification itself.

4.2 Interface to sclang

Faust can produce an XML description of a plu-
gin, including various meta data and the struc-
tural layout of the user interface.

This information is used by faust2sc in the
Faust distribution to generate a SuperCollider
class file, which can be compiled and subse-
quently used from within sclang.

For example,

$ faust -xml -o /dev/null noise.dsp
$ faust -xml -o /dev/null karplus.dsp
$ faust2sc -p Faust -o Faust.sc \

noise.dsp.xml karplus.dsp.xml

generates a SuperCollider source file, that, when
compiled by sclang, makes available the respec-
tive plugins for use in synth definitions.

Now copy the source file into sclang’s search
path, e.g.
~/share/SuperCollider/Extensions/Faust
on Linux.

Since scsynth doesn’t provide GUI facilities,
UI elements in Faust specifications are mapped
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to control rate signals on the synthesis server.
The argument order is determined by the order
of appearance in the (flattened) block diagram
specification; audio inputs (named in1 . . . inN)
are expected before control inputs. The freeverb
example plugin has the following arguments to
the ar instance creation method when used from
sclang:

in1 in2 damp(0.5) roomsize(0.5) wet(0.3333)

i.e. first the stereo input pair followed by the
control inputs including default values.

4.3 Examples
Unsurprisingly plugins generated by Faust can
be used just like any other unit generator plu-
gin, although the argument naming can be a
bit verbose, depending on the labels used in UI
definitions.

Assuming the server has been booted, the
“noise” example found in the distribution can
be tested like this:

{ Pan2.ar(
FaustNoise.ar(0.2),
LFTri.kr(0.1) * 0.4)

}.play

A more elaborate example involves the
“karplus” example plugin and shows how to use
keyword arguments.

{
FaustKarplus.ar(
play: { |i|
Impulse.kr(
exprand(10/6*(i+1), 20)
* SinOsc.kr(0.1).range(0.3, 1)

)
} ! 6,
duration_samples: LFSaw.kr(0.1)

.range(80, 128),
attenuation: LFPar.kr(0.055, pi/2)

.range(0.1, 0.4)

.squared,
level: 0.05

).clump(2).sum
}.play

Note that the trigger button in the jack-gkt
example has been replaced by a control rate im-
pulse generator connected to the play input.

Rewriting the monophonic synth example
from section 3.3 in SuperCollider is a matter
of recompiling the plugin,

$ faust -a supercollider.cpp \
-o synth.cpp synth.dsp

$ g++ -shared -o synth.so \
‘pkg-config --cflags libscsynth‘ \
synth.cpp

$ faust -xml -o /dev/null synth.dsp
$ faust2sc -p Faust -o FaustSynth.sc \

synth.dsp.xml

and installing synth.so and FaustSynth.sc to
the appropriate places.

The corresponding SynthDef just wraps the
Faust plugin:

(
SynthDef(\faustSynth, {
| trig(0), freq(440), gain(1),
attack(0.01), decay(0.3),
sustain(0.5), release(0.2) |

Out.ar(
0,
FaustSynth.ar(
gate: trig,
freq: freq,
gain: gain,
attack: attack,
decay: decay,
sustain: sustain,
release: release

)
)

}, [\tr]).send(s)
)

and can now be used with SuperCollider’s pat-
tern system:

(
TempoClock.default.tempo_(2);
x = Synth(\faustSynth);
p = Pbind(
\instrument, \faustSynth,
\trig, 1,
\sustain, 0.2,
\decay, 0.1,
\scale, #[0, 3, 5, 7, 10],
\release, Pseq(
[Pgeom(0.2, 1.5, 4),
4,
Pgeom(0.2, 0.5, 4)],
inf

),
\dur, Pseq(
[Pn(1/4, 4),
15.5/4,
Pn(1/8, 4)],
inf

),
\degree, Pseq(
[1, 2, 3, 4, 5, 2, 3, 4, 5].mirror,
inf

)
).play(
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protoEvent: (
type: \set,
args: [\trig, \freq, \release]

)
)
)

5 Conclusion

Existing functional programming environments
have traditionally been focused on non real-
time applications such as artificial intelligence,
programming language compilers and inter-
preters, and theorem provers. While multime-
dia has been recognized as one of the key areas
which could benefit from functional program-
ming techniques (Hudak, 2000), the available
tools are not capable of supporting real-time ex-
ecution with low latency requirements. This is
unfortunate since real time is where the real fun
is in multimedia applications.

The Faust programming language changes
this situation. You no longer have to program
your basic DSP modules in C or C++, which is
a tedious and error-prone task. Faust allows you
to develop DSPs in a high-level functional pro-
gramming language which can compete with,
or even surpass the efficiency of carefully hand-
coded C routines. The SuperCollider Faust plu-
gin interface lets you execute these components
in a state-of-the-art synthesis engine. More-
over, using Q’s Faust and SuperCollider inter-
faces you can also program the real-time control
of multimedia applications in a modern-style
functional programming language. Together,
Faust, Q and SuperCollider thus provide an ad-
vanced toolset for programming DSP and com-
puter music applications which should be useful
both for practical application development and
educational purposes.
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Design of a Convolution Engine optimised for Reverb

Fons ADRIAENSEN
fons.adriaensen@skynet.be

Abstract
Real-time convolution has become a practical tool
for general audio processing and music production.
This is reflected by the availability to the Linux au-
dio user of several high quality convolution engines.
But none of these programs is really designed to be
used easily as a reverberation processor. This paper
introduces a Linux application using fast convolu-
tion that was designed and optimised for this task.
Some of the most relevant design and implementa-
tion issues are discussed.

Keywords
Convolution, reverb.

1 Introduction

The processing power of today’s personal com-
puters enables the use convolution with rela-
tively long signals (up to several seconds), as
a practical audio tool. One of its applications is
to generate reverberation — either to recreate
the ’acoustics’ of a real space by using captured
impulse responses, or as an effect by convolving
a signal with synthesised waveforms or virtual
impulse responses.

Several ‘convolution engines’ are available to
the Linux audio user. The BruteFir pack-
age1 by Anders Torger has been well known for
some years. More recent offerings are Florian
Schmidt’s jack convolve2 and JACE 3 by Fons
Adriaensen.

While one can obtain excellent results with
these programs, none of them is really designed
to be an easy-to-use reverb application. An-
other problem is that all of them use partitioned
convolution with uniform partition size, which
means there is a tradeoff to be made between
processing delay and CPU load (JACE allows
the use of a period size smaller than the par-
tition size, but this does not decrease the la-
tency). While in e.g. a pure mixdown session

1http://www.ludd.luth.se/ torger/brutefir.html
2http://www.affenbande.org/ tapas/jack convolve
3http://users.skynet.be/solaris/linuxaudio

a delay of say 100 ms could be acceptable, any-
thing involving live interaction with performers
requires much smaller latency.

The Aella package written by the author is a
first attempt to create a practical convolution
based ‘reverb engine’. An alpha release4 will be
available at the time this paper is presented at
the 4th Linux Audio Conference. In the follow-
ing sections, some of the design and implemen-
tation issues of this software will be discussed.

2 Anatomy of natural reverb

If reverb is added as an effect then everything
that ‘sounds right’ can be used. If on the other
hand the object is to recreate a real acoustical
space or to create a virtual one, then we need
to observe how a natural reverb is built up, and
how it is perceived by our hearing mechanisms.

Imagine you are in a concert hall listening to
some instrument being played on stage. Pro-
vided the sound source is not hidden, the first
thing you hear is the direct sound (DS). This
will be followed after some milliseconds by the
first reflections from the walls and ceiling. The
sound will continue to bounce around the room
and a complex pattern of reflections will build
up, with increasing density and decreasing am-
plitude. This is shown in fig.1. Traditionally a
reverb pattern is divided into an initial period
of early reflections (ER) lasting approximately
50 to 80 ms, and a reverb tail (RT) that shows
a quadratic increase in density and decays ex-
ponentially. From an acoustical point of view
there is no clear border between the two regimes
— the distinction is the result of psychoacoustic
effects.

The early reflections, while being discrete,
are not heard as a separate sound, rather they
‘merge’ with the direct sound. They provide
our hearing mechanisms with important clues
as to the direction and distance of the sound

4http://users.skynet.be/solaris/linuxaudio/aella
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Figure 1: A typical natural reverb pattern

source, and the size and nature of the acousti-
cal environment. The pattern of ER can either
reinforce or contradict the results of other mech-
anisms used by our brain to detect the location
of a sound source. For this reason it is impor-
tant, when recreating an acoustical space, that
the ER are consistent with the positioning of
sound sources. For a traditional setting with
musicians on a stage in front of the audience,
at least three (left, centre, right) and preferably
more sets of ER should be available to achieve
a convincing result. More would be necessary
in case the sound sources are all around the lis-
teners.

In concert halls used for classical music, the
lateral early reflections (from the side walls)
seem to play an important part in how the
‘acoustics’ are appreciated by the listeners. This
is often said to explain why ‘shoe-box’ concert
halls such as the ones at the Amsterdam Con-
certgebouw or the Musikverein in Vienna are
preferred over ‘auditorium’ shaped ones.

Early reflections very close to the direct sound
(less than a few milliseconds) will often result
in a ‘comb filter’ effect, and should be avoided.
Discrete reflections that are too far behind the
DS or too loud will be heard as a separate ‘echo’.
These echos occur in many acoustical spaces but
not in a good concert hall.

In contrast to the ER, the reverb tail is clearly
perceived as a separate sound. A natural reverb
tail corresponds to a ‘diffuse’ sound field with no
clear source direction. This doesn’t mean that
it has no spacial distribution — it has, and this
should be reproduced correctly. Of course, the
reverb tail will be different for each source (and

listener) position, but in general we can not hear
this difference — for the RT, only its statistical
properties seem to matter. As a result, provided
the early reflections are correct, it is possible to
use a single reverb tail for all sources.

In most rooms, the RT will show an expo-
nential decay over most of the time. This is not
always the case: some spaces with more com-
plex shapes and subspaces (e.g. churches) can
produce a significantly different pattern.

3 Requirements for a convolution
reverb engine

Taking the observations from the previous sec-
tion into account it is now possible to define the
requirements for a practical convolution based
reverb engine.

3.1 Flexibility
In order to be as flexible and general-purpose as
possible, the following is needed:

• The engine should allow to combine a num-
ber of ER patterns with one or more reverb
tails. The number of each should be under
control of the user. Separate inputs are re-
quired for each ER pattern.

• The relative levels of ER and RT, and the
shape of the RT must be controllable. The
latter can be used for effects such as e.g.
‘gated reverb’ that is cut off in the middle
of the tail.

• The engine must be able to use a number of
formats, from mono to full 3D Ambisonics.
It should also support the use of different
sample rates.
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Figure 2: Aella audio structure.

This leads to the general structure shown in
fig.2. The ER and RT inputs are always mono,
while the DS input and the output will have
the number of channels required for the selected
format.

In most cases a reverb unit like Aella will be
driven from post-fader auxiliary sends from a
mixer application and in that case the DS in-
put is normally not used. It is provided for
cases where the reverb is used as in insert, e.g.
for single channel effects, and to overcome some
potential latency problems discussed in the next
section.

3.2 Minimal processing delay
The reverb engine should ideally operate with
no processing delay, and be usable with all pe-
riod sizes when running as a JACK client. This
turned out to be the most difficult requirement
to satisfy. This is discussed in more detail in
section 4.

There is even a requirement for negative pro-
cessing delay. This occurs when the output of
the reverb is sent back into the same JACK
client that is driving it, creating a loop with
one period time delay on the returned signal.
It is possible to compensate for this: remember
that the first few (5 to 10) milliseconds after
the direct sound should not contain any ER in
order to avoid coloration. So provided the pe-
riod time is small enough, this ‘idle time’ can
be absorbed into the processing delay, provided
the DS path is not used. To enable this, Aella
provides the option to take the feedback delay
into account when loading a reverb pattern.

In case the period time is too long to do this,
another solution is to route the direct sound
through the reverb and accept a delay on all

sound. Aella will always insert the proper delay
(not shown in fig.2) into the DS path, depending
on its configuration and the period size. Doing
this also allows operation with larger processing
delay, leading to lower CPU usage.

3.3 Ease of use
It’s mainly the requirements from the previous
two sections that make general purpose convo-
lution engines impractical for day-to-day work.
Having to take all of this into account and keep
track of all impulse files, offsets, gains, etc.
when writing a configuration script will rapidly
drive most less technically inclined users away.

The solution is to automate the complete con-
volution engine configuration, using only pa-
rameters and options that make direct sense to
e.g. a musical user. This is what Aella tries to
achieve.

Aella first presents a menu of available reverb
responses to the user. When one is selected,
more information is provided, e.g. in case of
a captured real impulse response some info is
given on the original space, its reverb time, how
the recording was made, etc. A new menu is
presented showing the available ER and RT pat-
terns for the selected reverb. The user selects
the signal format, the patterns to be used, and
some options that enable him or her to trade
off CPU load against latency. Immediate feed-
back about processing delay is provided for the
latter. Finally the users clicks the ‘LOAD’ but-
ton, and then all the complex partitioning and
scheduling discussed in the next section is per-
formed, and the impulse responses are loaded.
The reverb is then ready for use.

Aella uses a single file for each reverb pro-
gram, containing all the impulse responses (even
for different sample rates and formats) and all
the extra information that is required. Since
this file has to contain binary data (the IR, in
floating point format) anyway, and given the
author’s known aversion to things like XML, it
should not come as a surprise that this is a bi-
nary file format. It is of course completely open,
and (hopefully) flexible enough to allow for fu-
ture extensions.

Presently these files are generated using a
command line tool. In future versions of Aella
this function may be integrated into the main
program.

4 Using non-uniform partition sizes

The only way to obtain zero processing delay
(in the sense that at the end of the process call-

LAC2006
51



-1 0 1 2 3 4 5 ...

cycle 0

cycle 1

A0

B0

D-2,-1

A1

B1

C0,1

D0,1

A B C D

A2

B2

D0,1

cycle 2

Figure 3: Equal load schema for (1,1,2,2) parti-
tioning

back the output signal contains the input of the
same callback convolved with the first samples
of the impulse response) is to use a partition
size equal to the period size. For small period
sizes it is infeasible to compute the entire convo-
lution using this partition size — the CPU load
would be above the limit or unacceptable — so
a scheme using a mix of sizes is required.

How to organise a non-uniform partition size
convolution so as to obtain the same CPU load
for all cycles is known to be a hard problem,
in the sense that there is no simple algorithm,
nor even a complicated one, that provides the
optimal solution in all cases. It’s an interesting
research problem to say the least. One of the
referenced papers (Garcia, 2002) will provide a
good idea of the state of the art, and of the
complexity of some of the proposed solutions.

The problem is further complicated if multi-
ple inputs and outputs are taken into consider-
ation (these can sometimes share the FFT and
inverse FFT operations), and even more if the
target platform is not a specialised DSP chip
with predictable instruction timing but a gen-
eral purpose PC, and things such as multitask-
ing and cache effects have to be taken into ac-
count.

One of the most useful results was published
by Bill Gardner as far as ten years ago (Gard-
ner, 1995). Assuming the CPU load is domi-
nated by the multiply-and-add (MAC) phases,
and is proportional to the data size, a uniform
load can be obtained if the partition sizes fol-
low a certain pattern. Figure 3 provides the
simplest example. Here we have four partitions

cycle 0

cycle 1

cycle 2

cycle 3

-1 0 1 2 3 4 5 ...

A0

B0

A1

B1

C0,1

D0,1

A2

B2

A3

C2,3

D2,3

E-4...-1

F-4...-1

B3

A B C D E F

Figure 4: Equal load schema for (1,1,2,2,4,4)
partitioning

A, B, C, and D with relative sizes 1, 1, 2, 2. The
black lines depict the work that can be started
in each cycle, for the indicated partition and
cycle number(s). For example the line labelled
‘C0,1’ represents the output generated from the
inputs of cycles 0 and 1 and partition C. In the
odd numbered cycles we would have three times
the work of the even numbered ones. But the
computation related to partition D can be de-
layed by three cycles, so it can be moved to the
next even cycle, resulting in an uniform load.

This schema can be generalised for partition
sizes following the same doubling pattern. Fig-
ure 4 shows the solution for sizes proportional
to 1, 1, 2, 2, 4, 4. The red lines in this figure
correspond to the computations that have been
moved.

There is a limit to what can be done in this
way, as the underlying assumptions become in-
valid very for small period and large partition
sizes.

Looking again at fig.4, it is clear that except
when partition A is involved, the outputs are
required only in the next or in even later cy-
cles. This is even more the case for any later
partitions (G, H, . . . of relative size 8 or more).
So part the work can be delegated to a separate
thread running at at lower priority than JACK’s
client thread (but still in real-time mode). This
will increase the complexity of the solution, as
the work for later partitions needs to prioritised
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in some way in order to ensure timely execution,
but in practice this can be managed relatively
easily.

In Aella, a mix of both techniques is em-
ployed. For the reverb tail convolution a large
process delay can be accepted and compensated
for by removing the zero valued samples at the
start. It uses a minimum size of 1024 frames for
the first partition, increasing to a maximum of
8K for later parts (due to cache trashing, noth-
ing is gained by using larger sizes), and all work
is done in a lower priority thread.

There is an unexpected potential problem re-
lated to moving work to a secondary thread.
Imagine the average load is high (say 50%) and
the largest partition size is 8K, i.e. there will be
something like six such partitions per second.
The audio processing by other applications will
not suffer from the high load, as most of the
work is being done at a lower priority. But the
responsiveness of the system e.g. for GUI inter-
action, or even just for typing text in a terminal,
will be severely impaired by a real-time thread
executing for several tens of milliseconds at a
time. So the work performed in the lower pri-
ority thread can not just be started ’in bulk’ —
it has to be divided into smaller chunks started
by triggers from the higher frequency process
callback.

For the early reflections convolution the sit-
uation is quite different, as it has to provide
outputs without any delay. Depending on the
period size, Aella will use a minimum partition
length of 64 frames, and a schema similar to
fig.4 for the first few partitions. Later ones are
again moved to a lower priority thread.

The process callback will never wait for work
done at lower priority to complete — it just as-
sumes it will be ready in time. But it will check
this condition, and signal a ‘soft overrun’ (indi-
cated by a flashing light in Aella’s GUI) if things
go wrong.

For period sizes below 64 frames, Aella will
buffer the inputs and outputs, and still try to
get the best load distribution. The processing
delay will increase due to the buffering, but any
idle time before the first early reflection will be
used to compensate automatically for the in-
creased delay, in the same way as happens for
the feedback delay.

The exact scheme used depends in a quite
complicated way on the actual period size and
on some user options related to processing delay.
This was one of the more difficult to write parts

of the application, much more than the real DSP
code. The final result is that Aella will be able
to operate without any processing delay and at
a reasonable CPU load in most practical cases.
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Abstract

Sampled Waveforms And Musical Instruments 
(SWAMI) is a cross platform collection of 
applications and libraries for creating, editing, 
managing, and compressing digital audio based 
instruments and sounds.  These instruments can 
be used to compose MIDI music compositions 
or for other applications such as games and 
custom instrument applications.  Discussed 
topics will include: common instrument file 
formats, Swami application architecture, Python 
scripted instrument editing, CRAM instrument 
compression, PatchesDB ­ a web based 
instrument database, and basic usage of Swami.

Keywords
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1 Introduction

It  was decided early on  in the development of 
Swami   that   the   primary   focus   would   be   on 
providing   a   tool   for   editing   wavetable   based 
instruments.  Wavetable instruments are composed 
of one or more “samples” of digital audio.  While 
the original project goals have been expanded on, 
the focus remains the same.     In the Linux audio 
and   music  paradigm  of   having  many   tools  with 
well defined purposes interacting with each other, 
Swami   provides   a   way   to   create   and   manage 
instrument   sounds   of   specific   formats.     Useful 
types   of   applications   to   interface   to   the   Swami 
application   include:   MIDI   sequencers,   audio 
sample   editors,   and   JACK   enabled   applications. 
Wavetable  synthesizers  are  also pluggable   in  the 
Swami architecture, although currently FluidSynth 
is the only supported soft synth.  In addition, other 
applications   may   choose   to   interface   to   the 
underlying libraries for instrument file processing.

2 Instrument Formats

There   are   countless   sample   based   instrument 
formats   currently   in   use   today.     Some   are 
commonly used, others obscure, some are based on 
open standards, some are proprietary.  The goal of 
the Swami project is to support some of the more 
commonly used formats with a preference for open 
standards.   Swami currently has varying levels of 
support for the following formats:  SoundFont  ®1 
version   2,   DLS   (DownLoadable   Sounds),   and 
GigaSampler ®2.  Support for some of the popular 
Akai formats are planned for the future, and there 
is also some interest expressed in creating a new 
open instrument format.    The rest of this  section 
will   be   dedicated   to   describing   the   3   currently 
supported   formats   mentioned   (GigaSampler   to   a 
lesser extent).

2.1 Synthesis Model

All   the  currently  supported   instrument  formats 
use digital  audio as  the basis  of  sound synthesis 
and   have   a   fixed   synthesis   architecture.     This 
means   that   there   is   a   fixed  number  of   synthesis 
components,  each  with  a  specific   function.    The 
synthesis components modulate various effects and 
parameters   of   the   played   sounds.     Synthesis 
components and parameters include:

• Audio samples with loops
• Key splits and Velocity splits
• Envelopes
• LFOs (Low Frequency Oscillators)
• Filters (Low Pass Filter for example)
• Stereo panning
• Tuning (pitch of playback)
• Reverb and Chorus
• Effect Modulators (MIDI Controller, etc)

1SoundFont is a registered trademark of EMU Systems, Inc

2GigaSampler  is  a  registered  trademark  of  Nemesys  Music 
Technology, Inc
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2.2 Sample Loops

   At the core of the synthesis model are the audio 
samples.     The   capability   of   having   continuous 
sounds can be realized by looping a portion of a 
sample  which   also   saves  on   storage   space.    An 
alternative   is   to   have   very   long   samples   which 
satisfy the maximum expected note duration.

2.2.1 Key and Velocity Splits
   When a MIDI note event is generated it contains 
the MIDI note # and velocity # (the speed at which 
the   note   was   played,   roughly   translates   to   how 
hard the key was pressed).  Key splits and velocity 
splits define a MIDI note range and velocity range 
respectively, for which a given audio sample will 
sound.
   Due to the finite nature of digital sampled audio, 
a sample becomes more distorted the further from 
its original pitch it is played.  While one could use 
a single sample for the entire MIDI note range, it is 
usually   undesirable,   since   the   sound   will   likely 
deviate   far   from   the   instrument   or   sound   being 
reproduced.     For   this   reason,   an   instrument   or 
sound is often sampled at several different pitches 
and each one  is  given  the note  range (key split) 
which surrounds the notes closest   to the original 
sampled   pitch.     Key   splits   are   also   used   for 
percussion   kits   (usually   one   note   per   sound)   as 
well as instruments with layered sounds.
  Velocity   splits   are   useful   for   playing   back 
different   sounds   and/or   different   effect   settings 
based on the speed a key is played.

2.2.2 Envelopes
Envelopes provide a simple and convenient way to 
modify an effect  (such as volume) over the note 
playback   cycle.    The   type  of  envelopes  used   in 
these formats are fixed 6 stage envelopes.    Each 
stage   is   controlled   by   a   value   and   are   named: 
Delay, Attack, Hold, Decay, Sustain and Release. 
A   brief   description   of   a   Volume   Envelope: 
following the Delay period the Attack stage begins 
which controls the amount of time it takes for the 
sound to reach its maximum level, the volume is 
then held for the Hold time, followed by the Decay 
stage  where   the  volume  decreases   to   its  Sustain 
level over a specified time and remains until   the 
key is released which causes the volume to return 
to silence within the Release time interval.

2.2.3 LFOs
    LFOs   provide   low   frequency   oscillation   of 
effects.    They are defined by a delay, frequency, 
and effect modulation level.   They can be used to 
provide tremolo (volume), vibrato (pitch) and filter 
oscillations.  The sine wave is the most commonly 
used oscillator waveform, but some formats allow 
for other types of waveforms as well.

2.2.4 Filter
   The most  common filter used is  the Low Pass 
filter.     This   produces   a   “wah­wah”   effect   often 
used with guitars and electronic music.  It consists 
of a filter cutoff frequency and Q (quality) value. 
As the filter cutoff decreases the frequencies above 
are   attenuated.     The   Q   parameter   controls   the 
intensity of the resonance at the cutoff frequency. 
The   higher   the   Q   the   more   pronounced   the 
frequencies will be near the cutoff.

2.2.5 Modulators
Modulators   provide   a   flexible   mechanism   for 
controlling effects in real time via MIDI controls 
or other parameters such as MIDI note or velocity 
value.   SoundFont and DLS files both provide a 
similar model which allows one to map one or two 
controls to an effect using a math function (Linear, 
Concave, Convex, and Switch), direction, polarity 
and value amount to apply to the effect.

2.3 Instrument Model

Instrument   files   are   organized   into   different 
components   (lets   call   them   objects).     The   most 
intuitive   model   of   instrument   files   is   a   tree   of 
objects   which   have   properties   (i.e.,   parameters). 
The   instrument   file   is   the   root   object   and   has 
parameters   such   as   Name,   Author,   Date, 
Copyright, etc.   This object in turn contains child 
objects such as Samples, Instruments and Presets. 
The   Sample   objects   are   rather   similar   between 
formats in that they represent  a single sample of 
audio   with   properties   such   as   SampleRate, 
RootNote,   FineTune,   and   possibly   loop 
information.   The Instrument objects consist of a 
set of child Region objects (Zones in SoundFont 
terminology)   which   each   reference   a   Sample. 
These regions contain all the synthesis parameters 
to   be   applied   to   the   referenced   sample 
(key/velocity   split   ranges,   tuning,   envelopes, 
LFOs, etc).  In the case of SoundFont files there is 
an   additional   level   called   Presets   which   group 
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together Instrument objects and allow offsetting of 
effect   values   for   all   referenced   instruments. 
Instruments   (Presets   in   the   case   of   SoundFont 
files)  define  the unique MIDI bank and program 
number which each instrument should be mapped 
to, which are used for selecting it for play.

2.3.1 Feature Comparison
The   synthesis  models   of  SoundFont   and  DLS 

files   are   very   similar.     Both   have   a   Volume 
Envelope, Modulation Envelope (Filter and Pitch), 
Modulation   LFO   (Pitch,   Filter   and   Volume), 
Vibrato   LFO   (Pitch   only),   Low   Pass   Filter, 
Reverb, Chorus, Panning and Tuning parameters.

The file format on the other hand differs quite a 
bit.    DLS  is  much  more   flexible  and  allows   for 
custom additions.    Samples  consist  of  embedded 
WAV files, which adds a lot of flexibility as far as 
the audio format (although only 8 bit and 16 bit is 
defined for compliance).    SoundFont files on the 
other hand are 16 bit audio only.   DLS files also 
have   support   for   multi­channel   instruments 
(surround sound), whereas SoundFont is limited to 
stereo.     In   addition   DLS   uses   32   bit   parameter 
values and SoundFont uses 16 bit.

GigaSampler   files   on   the   other   hand   have   a 
completely different  synthesis  model.    While  the 
file structure is based on DLS they contain many 
proprietary extensions.  Instruments are composed 
of dimensions which multiplex samples to ranges 
of   a   parameter   (such   as   note,   velocity,   a   MIDI 
controller, etc).  This model is a convenient way of 
triggering  different   samples  or   effect  parameters 
based   on   different   inputs.     GigaSampler   has 
support for other specific features also like sample 
cross fading,  different  filter   types,  different  LFO 
waveforms, is designed for sample streaming and 
some other nice features.    The down side of this 
format is that it is not an open standard and many 
of the parameter ranges are quite small compared 
to the other formats.

SoundFont version 2

Creator E­mu Systems, Inc.

Pros Open   standard,   popular,   simple   fixed 
synthesis   model,   flexible   effect 
modulators.

Cons 16 bit mono or stereo audio only, format 
not very expandable.

DLS (DownLoadable Sounds)

Creator MIDI Manufacturers Association

Pros Open standard (although v2 spec must 
be   purchased),   simple   fixed   synthesis 
model,   flexible   file   format,   large 
parameter ranges, adopted by MPEG4.

Cons Not yet in wide use.

GigaSampler

Creator Nemesys Music Technology, Inc

Pros Designed   for   streaming,   dimension 
model   is  nice,  cross   fading,  additional 
filter and oscillator types.

Cons Proprietary   format,   small   parameter 
ranges compared to other formats, more 
complex synthesis.

3 Swami Architecture

The   Swami   application   consists   of   several 
components, including:

• libInstPatch   (Lib   Instrument   Patch)   – 
Object oriented instrument editing library.

• libSwami  –  All  useful  non  GUI   specific 
functionality can be found in this library.

• SwamiGUI  –  The  GUI   front   end.    Also 
implemented as a library to allow plugins 
to link against it.

• Plugins – FluidSynth for sound synthesis 
and   FFTune   for   computer   aided   sample 
tuning.

The underlying libInstPatch and libSwami libraries 
are written   in  C and utilize   the  GObject   library. 
This   popular   architecture   was   chosen   so   as   to 
benefit   from object   oriented  programming  while 
still   providing   the   most   flexibility   in   language 
bindings.     These   two   libraries   are   also   not 
dependent   on   any   graphical   toolkit,   simplifying 
their usage for non GUI applications.
The GUI is also written in C, in an object oriented 
fashion, and uses the GTK+ version 2 toolkit and 
GnomeCanvas.    Of note is that GnomeCanvas is 
not  dependent  on Gnome and likewise  neither  is 
Swami.
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3.1 libInstPatch

This   library   is   responsible   for   loading,   saving 
and editing instrument files.  Its features include:

• Instrument  files  are stored  in memory as 
trees   of   objects   with   type   specific 
properties.

• Object   conversion   system  which  handles 
converting   between   file   formats   and 
objects.   Also handles loading and saving 
instrument files and importing samples.

• Paste   system   for   an   intuitive   method   of 
adding objects to an instrument tree.

• Flexible sample data storage (in RAM, in a 
file, etc).

• Sample   format   conversion   (bit   width, 
mono/stereo, integer/float).

• Voice caches   for   fast   lock  free  synthesis 
(only   SoundFont   synthesis   model 
currently).

• CRAM   instrument   compression   for 
supported   formats   and   a   generic 
decompresser implementation.

• Attempts to be multi­thread safe.

3.2 libSwami

Functionality which is not specific to instrument 
file editing or the GUI finds its way here.  Features 
include:

• Plugin system for extending Swami.
• Wavetable driver object.
• MIDI device object for MIDI drivers.
• GValue based control networks.

Of   particular   interest   is   the   GValue   control 
networks.     GValue   is   a   structure   used   in   the 
GObject   library   which   acts   as   a   wild   card 
container.     It   can   store   an   integer,   float,   enum, 
flags, string, GObject and more.  Control networks 
are   formed   by   connecting   one   or   more 
SwamiControl  objects   together,   values  or   events 
generated   by   a   control   object   are   sent   to   all 
connected   objects.     Examples   of   usage   include, 
connecting   GUI   controls   to   an   instrument 
parameter.     When   the   parameter   changes,   all 
controls are notified with the new value.   Another 
example usage is in routing MIDI events between 
the virtual keyboard and FluidSynth.

Also  of  note   is   the  SwamiWavetbl  object  which 
forms the basis of adding support for a synthesizer 
such as the FluidSynth plugin.

3.3 SwamiGUI

The   Swami   Graphical   User   Interface   is   what 
many   users   will   interface   with   when   editing   or 
managing their instruments.   The GUI interface is 
also object oriented and makes heavy use of Model 
View Controller functionality (change a parameter 
all views update, as the user expects).    The GUI 
layout is also flexible so that it may be subdivided 
at   will   and   interface   elements   can   be   changed 
simply by drag and drop.

Many of the interfaces (virtual keyboard, sample 
loop editor, splits, etc) are implemented using the 
GnomeCanvas.  Although not perfect, it has helped 
to   create   flicker   free   zoomable   widgets   without 
having to pay attention to a lot of details.

3.4 Existing Plugins

Current plugins include the FluidSynth software 
synthesizer and the FFTune plugin which uses the 
FFTW  library   (Fastest   Fourier  Transform   in   the 
West) to assist users in tuning their samples.

4  Python Binding

The 3 library components of Swami each have 
their   own   Python   binding.     The   most   useful   of 
these   is   libInstPatch.     Using   this   binding   it   is 
possible   to   create   or   modify   instruments   in   a 
scripted   fashion.     When   dealing   with   files 
containing many instruments it can become rather 
tedious to perform an editing operation across all 
instruments.   With a bit of Python knowledge the 
tediousness of these tasks can be greatly reduced. 
This also adds a level of ease for users who wish to 
extend   the   functionality   of   Swami   at   runtime 
(versus   having   to   write   in   C).     Example   uses 
include:   writing   custom   instrument   export   or 
import routines, auto defining key splits based on 
the optimal note ranges, batch parameter setting or 
instrument renaming, etc.

5 CRAM Instrument Compression

CRAM  (Compress  hybRid  Audio  Media)   is   a 
format   that   was   created   specifically   for 
compressing   instruments.     There   are   a   few 
instrument compression formats in use today, but I 
found   them   to   be   either   proprietary,   lack   cross 
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platform   support   or   restricted   to   a   specific 
instrument  format.    CRAM is not  constrained   to 
only   instruments   though   and   would   likely   be 
useful for other file formats containing binary and 
audio data as well.    The file format  uses EBML 
(created   for   the   Matroska   multimedia   container 
format) which was chosen for its compact design 
and extendability.

Binary compressors such as gzip, bzip2, etc are 
generally poor at compressing audio.  FLAC (Free 
Lossless   Audio   Codec)   provides   lossless   audio 
compression   and   often   achieves   much   better 
compression   ratios   than   a   standard   binary 
compressor.     CRAM   utilizes   FLAC   for   audio 
portions of an instrument file and gzip for the rest. 
Each   audio   sample   is   compressed   individually, 
taking advantage of the knowledge of the bit width 
and   number   of   channels.     The   binary   is 
concatenated and compressed as a single stream of 
data.     Instrument  compressors  must  be  aware  of 
the structure of the file they are compressing but 
the decompresser on the other hand is generic, and 
sees   the   resulting   output   as   simply   interleaved 
binary   and   audio   segments.     CRAM   supports 
multiple files in a single archive and can preserve 
file timestamps.

In   the   future   support   for   lossy   audio 
compression may be added to the CRAM format. 
While   lossy   audio   is   generally   undesirable   for 
music composition, it might be nice for previewing 
an   instrument  online  or   used   as   the   instruments 
embedded with a MIDI file on some future web 
site.

One   of   the   technical   difficulties   of   lossy 
compression of samples  is  the phase relationship 
of the decompressed signal to the original.   If the 
sample contains any loops, they may end up with 
audible clicks due to differences in the data at the 
loop end points.    It  has not  been determined yet 
how pronounced this effect is with a codec such as 
Vorbis or what is the most effective way to deal 
with it.

6 PatchesDB

A   web   based   instrument   database   written   in 
Python.  This project was started for the purpose of 
creating   a   free,   concise,   online   instrument 
database.

The   current   implementation   is   called   the 
Resonance Instrument Database and can be found 
at:
http://sounds.resonance.org

Features include:
• User accounts
• Upload   and   maintain   your   own 

instruments
• Support   for   all   libInstPatch   supported 

formats (Python binding used for import)
• CRAM used for compression
• Comment and rating system
• Browse   by   category,   author   or   perform 

searches

Future   plans   include   the   ability   to   browse, 
download   and   synchronize   instruments   and 
information between a local Swami client and an 
online   instrument   database;   and   preview 
instruments  by selecting  an   instrument,  choosing 
notes or a predefined sequence in a web form and 
server synthesizes the sound and streams it via an 
Ogg Vorbis stream.

7 Future Plans

Here are some future ideas for Swami.  Many of 
these   are   only   in   the   idea   stage   and   may   not 
become   reality,   but   I   like   to   dream   about   them 
anyways :)

• SwamiSH   –   The   Swami   Shell.     A 
command   line   interface   which   could   be 
used instead of the GUI.   Imagine editing 
large instruments remotely or providing a 
visually impared individual the chance to 
do some serious instrument editing.

• TCP/IP   Jam  Sessions   –   Multiple   Swami 
clients connect together, each user chooses 
the   instruments   they  would   like   to  play, 
clients download instruments as necessary, 
streamed   MIDI   data   is   then   exchanged 
(sequencers, MIDI equipment, etc).  Users 
hear   the   same   synthesized   instruments 
with minimal bandwidth overhead.  Might 
be better suited to LAN or dedicated low 
latency   networks,   but   might   be   fun   and 
expiremental otherwise too.

• Vector  Audio  Waveforms – The concept 
of   waveforms   described   by   splines   is 
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appealing to me.   Think Structure Vector 
Graphics,   but   for   audio.     Design   a 
waveform from scratch or trace an existing 
sampled   waveform.     Resulting   synthesis 
would not suffer from sampling errors or 
looping continuity issues.   Automation of 
spline control points in a periodic fashion 
may   lead   to   a   new   method   of   audio 
synthesis.   By no means all encompasing, 
but perhaps useful in its own way.

• GStreamer   plugin   –   Add   wavetable 
instrument   support   to   the   GStreamer 
multimedia framework.

• DSSI   interface  –  A Swami  DSSI  plugin 
would  likely make integration with other 
software much smoother.  DSSI is an API 
for  audio  processing  plugins,  particularly 
useful for software synthesis plugins with 
user interfaces.

• C++ Bindings – For those who prefer C++ 
but would like to use or interface to Swami 
or its underlying libraries.

• Open   Instrument   Format   –   It   may   be 
desirable   to   design   a   new   flexible   and 
open instrument format.  Something along 
the lines of an XML file which references 
external audio sample files and has support 
for   vector   audio   (for   envelopes,   LFO 
waveforms,   etc).     A   flexible   yet   simple 
synthesis model might be desirable.

8 Resources

• Swami – http://swami.sourceforge.net
• FluidSynth – http://www.fluidsynth.org
• CRAM 

http://swami.sourceforge.net/cram.php
• Resonance   Instrument   Database 

http://sounds.resonance.org
• DSSI ­ http://dssi.sourceforge.net
• EBML ­ http://ebml.sourceforge.net

9 Thanks

• Peter   Hanappe   and   Markus   Nentwig   for 
creating   FluidSynth.   I'm   happy   to   be   a 
contributor to that project and will try and 
be a better maintainer ;)

• Ebrahim Mayat for his continued efforts in 
testing Swami and FluidSynth on OSX.

• Keishi   Suenaga   for   his   recent   work   on 
building Swami on win32,  it  was a dirty 
job, but somebody had to do it.
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Abstract

A lesser known feature of Miller Puckette’s popu-
lar audio and media development framework “Pure
Data” is the possibility to create user defined graph-
ical data structures. Although the data structures
are included in Pd for several years, only recently a
sigificant number of users discovered and used this
feature. This paper will give an introduction to the
possibilities of Pd’s data structures for composers
and musicians and present several example applica-
tions.
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1 Introduction

Since its introduction in 19961 Miller Puck-
ette’s2 software environment Pure Data3, or
short Pd, has grown to become one the most
popular open source applications amongst me-
dia artists. Today Pd not only supports the
production of audio or midi data - with exten-
sions like Gem or PDP it is also widely used
in the field of video art and multimedia. While
the user base of Pd literary is huge compared
to most other related free software, one central
feature of Pd is not in such a wide use, although
it was one of the motivations to write Pd in the
first place, according to (Puckette, 1996):

Pd’s working prototype attempts to
simplify the data structures in Max to
make these more readily combined into
novel user-defined data structures.

“Novel user-defined data structures” is the
key term here. Simple numbers, let alone just
128 of them as in the MIDI standard, do not
provide a sufficient vocabulary for artists in any

1(Puckette, 1996)
2www-crca.ucsd.edu/~msp/
3www.puredata.org

field. Moreover predefining a limited vocabu-
lary at all is not flexible enough for unforseen
and novel uses.

In (Puckette, 2002) Puckette further states
about his motivation:

The underlying idea is to allow the
user to display any kind of data he or
she wants to, associating it in any way
with the display.

So the data structures Pd offers carry another
property: They are graphical structures, that is,
they have a visual representation as well.

Defining a structure for data alone is of not
much use unless there are ways to access and
change the stored data. For this task Pd in-
cludes several accessor objects, which will be
explained below. It also is possible to edit the
stored data through the graphical representa-
tion of a structure using mouse operations.

2 Defining data structures in Pd

The central object to create a structure defini-
tion in Pd is called struct. While a struct
object theoretically can be created anywhere in
a Pd patch, it generally is put into a Pd sub-
patch to be able to associate it with instructions
for its graphical representation.

Every struct needs to be given a name
and then one or more fields to carry its data.
For example a structure defining a note event
might look like this: struct note float freq
float vel float len.

Besides fields for floating point numbers, a
structure can also have fields of type symbol
which stores a word, and array. The latter
can be used to carry collections of structures
defined elsewhere in Pd. Members of an array
field have to be of the same type. An exam-
ple for this could be a score structure, which
holds several of our note structs in a “melody”
and also gets a score-name field: struct score
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symbol score-name array melody note. A
fourth type that can be used in a struct defi-
nition is the list type, which similar to array
can hold a collection of other structures, how-
ever these elements can be of different struct
types.

Two field names are treated in a special way:
float x and float y are used to specify the
x- and y- coordinates of a structure’s graphical
representation. Such representations are speci-
fied by adding objects for drawing instructions
to the same subpatch, that carries the struc-
ture definition. A very simple instruction is
drawnumber, which just displays the value of
the field given as its first argument: drawnumber
freq will draw the current value of the freq-field
of a structure. It also is possible to change that
value using the mouse by click and drag.

3 Pointer Magic

The structure definition in Pd can be compared
to struct in programming languages like C.
This analogy is taken even further if we look
at the way, instances of data structures are cre-
ated and their data is accessed. Because this is
done through pointers much like in C.

Pointers in Pd are a special data type. Other
types would be float and symbol — also called
“atoms”, because they reference a single, atomic
value — and lists made of several atoms. Point-
ers can be made to reference instances of struct
structures. Pd has an object to hold these
pointers which is called pointer as would be
expected. To make a pointer object actually
point to something in a Pd patch, it has to be
told, where to find that something. Subpatches
play an important role here.

3.1 Subpatches as named regions

Subpatches in Pd are commonly used to group
related functionality and to make better use of
the limited screen estate. However they also
have a syntactic meaning, because they create
a named region inside of a Pd patch. This re-
gion can be a target for various operations. Ev-
ery subpatch in Pd can be accessed by sending
messages to a receiver that is automatically cre-
ated by prepending the subpatch’s name with
the string “pd-”. An example for an opera-
tion supported by subpatches is clear, which
deletes every object inside the target subpatch.
A subpatch called “editor” thus can be cleared
by sending the message clear to a sender called
pd-editor as shown in Figure 1:

Figure 1: clearing a subpatch with a message

Now if a subpatch contains instances of data
structures, these are organized as a linked list,
which can be traversed using pointer objects.
For this, pointer supports traversal operations
initiated by (amongst others) the following mes-
sages:

• bang: output pointer to current element

• next: output pointer to next element

• traverse pd-SUBPATCH: position pointer
at the start of the list inside the subpatch
called “SUBPATCH”.

3.2 Creating instances of data
structures

Given a pointer to any position in a subpatch
canvas, it is possible to insert new instances of
structures using the append object. For this,
append needs to know the type of structure to
create and at least one of the fields to set.

Using our note example from above, one could
use append like this: append note freq. For
every field specified this way, the append object
will generate an inlet to set the creation value
of this field in the new instance. Additionally it
will have a further, rightmost inlet, which has
to be primed with a pointer, that specifies the
position, after which the new structure instance
should be inserted.

Supposing we have a subpatch called editor
in our patch, we can get a pointer to the start of
this subpatch by sending the message traverse
pd-editor followed by bang to a pointer ob-
ject, that itself is connected to appends right-
most inlet. Sending a number like 60 to the
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leftmost inlet (the freq inlet) will then create
a graphical instance of struct note inside the
subpatch editor, whose frequency field is set to
60 and whose other fields are initialized to zero.
For now, as we only used a drawnumber freq
as single drawing instruction, the graphical rep-
resentation is quite sparse and consists just of a
number in the top-left corner of the subpatch.

3.3 Get and set
The current values of fields in this new in-
stance of a struct note can be read using the
get-object, which on creation needs to know,
which struct-type to expect and which fields
to read out. If a valid pointer is sent to a get
note freq vel object, it will output the cur-
rent value of the frequency and the velocity field
stored at that pointer’s position.

The opposite object is called set and allows
us to set the fields inside an instance, that is
specified by sending a pointer to the rightmost
inlet of set first.

By traversing a whole subpatch using a com-
bination of traverse and next messages sent
to a pointer that is connected to get, reading
out a whole “score” is easily done.

Accessing array fields is slightly more com-
plicated, because it requires an intermediate
step: First we need to get the array-field out
of the initial pointer of the structure. The ar-
ray field is itself represented by a pointer. This
pointer however can be sent to the right inlet of
an element object, that on its left inlet accepts
an integer number to select the element inside
of the array by this index number.

4 Drawings

Unless the subpatch containing the struct def-
inition also has drawing instructions, the struc-
ture instances will be invisible, when they are
created. Pd offers several graphical primitives
to display data structures. drawnumber was al-
ready mentioned as a way, to draw a numeric
field as a number. If the struct has float-typed
fields called x and y this number also can be
moved around in the subpatch in both dimen-
sions. The x- and y-fields are updated according
to the current position with the upper left hand
corner of the subpatch window being at a point
(0,0). The x-axis extends from left to right, the
y-axis extends from top to bottom to make (0,0)
stay at the upper left.

The various drawing primitives accept coor-
dinates to specify their positions and dimen-
sions as well, however these are calculated in

a local coordinate system, whose (0,0)-point is
translated to the point specified by the value
of the fields float x float y in the struct
definition. For example, using this definition
struct coord float x float y we can use
two drawnumber objects to draw x and y with-
out overlapping by creating drawnumber x 0 0
and drawnumber x 0 15. The y-field will be
drawn 15 pixels below the x-field, as shown in
figure 2 (which also shows colors and labels in
drawnumber).

Figure 2: relative positioning

4.1 More drawing instructions
Further objects for drawning data are
drawpolygon, filledpolygon, drawcurve,
filledcurve and plot. They are described
in their respective help patches. Here we
will only take a look at drawpolygon, that is
used to draw connected line segments. Like
all drawing instructions it accepts a list of
positional arguments to control its appearance
and behavior. In the case of drawpolygon
these are:

• optional flag -n to make it invisible initially

• alternatively a variable given by -v VAR to
remotely control visibility

• Color specified as RGB-values.

• line-width in pixels

• two or more pairs of coordinates for the
start and end points of the line segments.

The next instruction would draw a blue
square of width w: drawpolygon 9 1 0 0 w 0
w w 0 w 0 0 (Fig. 3)

The size of the square, that is, the variable
w in this structure, can be changed using the
mouse or with set operations. The current
value of w always is accessible through the get
object, see section 3.3.
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Figure 3: a blue square

4.2 Persistence
Saving a patch containing instances of data
structures will also save the created data struc-
tures. Additionally it is possible to export the
current contents of a subpatch to a textfile by
sending the message write filename.txt to
the subpatch’s receiver (described in 3.1) and
read it back in using a similar read-message.

Such a persistence file contains a textual de-
scription of the data structure templates and
their current values, e.g. for our square-
structure:

data;
template square;
float x;
float y;
float w;
;
;
square 136 106 115;

5 Data structures in action

Instead of explaining all the features in detail,
that data structures in Pd provide, I would like
to present some examples of how they have been
used.

5.1 Graphical score
Pd’s data structures most naturally fit the needs
of preparing and playing graphical scores. In
his composion “Solitude”, north american com-
poser and Pd developer Hans-Christoph Steiner
used data structures to edit, display and se-
quence the score. The graphical representation
also controls the sequencing of events. He de-
scribes his approach in a post to the Pd mailing
list:4

4lists.puredata.info/pipermail/pd-list/
2004-12/024808.html

The experience was a good combina-
tion of visual editing with the mouse
and text editing with the keyboard.
The visual representation worked well
for composition in this style. [My]
biggest problem was finding a way to
represent in the score all of the things
that I wanted to control. Since I
wanted to have the score generate the
piece, I did not add a couple features,
like pitch shifting and voice allocation
control, which I would have liked to
have.

Both the Pd patch (Fig. 4) and a recording of
“Solitude” are available at the composer’s web-
site.5

Figure 4: Score for “solitude” by Hans-
Christoph Steiner

5.2 Interaction
“Solitude” changes the data stored inside a
structure only during the compositional phase,
but not in the performance of the piece. An ex-
ample, where data structures are manipulated
“on the fly” is the recreation of the classic video
game “PONG” by the author6, as shown in
Fig. 5.

This simple piece uses the ratio of the current
score in the game (1/2 in Fig. 5) to influence a
fractal melody played in the background. The
x-position of the ball is read out by a get-object
to pan the stereo position of the melody.

5.3 GUI-building
Data structures also are useful to implement
custom GUI elements for Pd. A collection of

5at.or.at/hans/solitude/
6footils.org/cms/show/27
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Figure 5: “PONG” by Frank Barknecht

these is currently built by Chris McCormick.7
Figure 6 shows an envelope generator and a
pattern seqencer of variable length, that can be
reused several times in a patch.

Figure 6: Two GUI objects by Chris Mc-
Cormick

5.4 Visualisation
Many advanced concepts in computer music or
digital art in general deal with rather abstract,
often mathematical issues. Data structures can
help with understanding these concepts by con-
necting the abstract with the visible world.

The german composer Orm Finnendahl cre-
ated such interactive Pd patches using data
structures to explain things like the sampling
theorem or granular synthesis.

With his patches “pmpd-editor” and “msd-
editor” (Fig. 7) the author of this paper wrote
tools to explore particle systems (masses con-
nected by springs) interactively. A user can
create the topology for a particle system and

7mccormick.cx/viewcvs/s-abstractions/

Figure 7: Editor for mass-spring-damper-
topologies by Frank Barknecht

animate it directly inside the Pd patch. Vari-
ous helper functions provide means for import-
ing and exporting such topologies to be used in
other applications as 3D-modellers for example.
The particle systems designed with the editor
can also generate control data to influence var-
ious synthesis methods. The editor is available
in the CVS repository of the Pure Data devel-
oper community at pure-data.sf.net.

5.5 Illustration
Finally we get back to another original motiva-
tion for writing Pd in the first place. In (Puck-
ette, 1996) Puckette writes:

Pd’s first application has been to pre-
pare the figures for an upcoming sig-
nal processing paper by Puckette and
Brown.

Almost a decade later, Puckette is still using
Pd to illustrate paper, this time for his book
project “Theory and Techniques of Electronic
Music”.8

All graphics in this book were made using Pd
itself, like the one shown in Fig. 8.

6 Conclusion

This paper could only give a short introduc-
tion to Pd’s data structures. As always they

8So far only available online at: crca.ucsd.edu/
~msp/techniques.htm
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Figure 8: Illustration courtesy by M. Puckette
from his book: “Theory and Techniques of Elec-
tronic Music”

are best learned by studying examples. Pd
comes with documentation patches that can be
edited and changed. Most patches that use
data structures are collected in the directory
“doc/4.data.structures” of the Pd documenta-
tion. The HTML-manual of Pd contains further
information in chapter “2.9. Data structures“.9

Pd’s data structures are powerful tools that
can greatly enhance the possibilities of Pd. In
some areas they still are a bit awkward to use
though. For example animating large numbers
of data structures may influence audio gener-
ation and even lead to dropped samples and
clicks. There also still are issues with provid-
ing a smooth framerate. In the author’s view
data structures thus cannot replace specialized
extensions like Gem in this regard yet. If they
should try to do so at all, remains an open ques-
tion.

However problems like this can only be found
and fixed, if more artists and musicians in the
Pd community will actually use them—a classi-
cal chicken and egg problem. Thus it is hoped
that this paper will create more interest in Pure
Data’s data structures.

9www-crca.ucsd.edu/~msp/Pd_documentation/
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Abstract
A system of externals for Pd and Max/MSP is de-
scribed that uses click triggers for sample-accurate
timing. These externals interoperate and can also
be used to control existing Pd and Max/MSP exter-
nals that are not sample-accurate through conver-
sion from clicks to bangs.
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1 Introduction

In the world of experimental electronic music,
regular pulsation has often been frowned upon.
During an exchange of ideas between Karlheinz
Stockhausen and several younger electronic mu-
sicians (Witts 1995) Stockausen observed, ”I
heard the piece Aphex Twin of Richard James
carefully: I think it would be very helpful if he
listens to my work Song Of The Youth, which
is electronic music, and a young boy’s voice
singing with himself. Because he would then im-
mediately stop with all these post-African rep-
etitions, and he would look for changing tempi
and changing rhythms, and he would not allow
to repeat any rhythm if it were varied to some
extent and if it did not have a direction in its
sequence of variations.” Richard D. James re-
sponded from a different perspective, ”I didn’t
agree with him. I thought he should listen to
a couple of tracks of mine: ”Didgeridoo”, then
he’d stop making abstract, random patterns you
can’t dance to.”

2 The Need for Better Timing

The same year this interview was published, I
attempted to use a pre-MSP version of Max to
control a drum machine I had built in Kyma.
This experiment also resulted in ”random pat-
terns you can’t dance to,” since the Max event
scheduler at the time was good enough for cer-
tain kinds of algorithmic music, yet not sta-
ble enough for techno music. Ten years later,

the event schedulers for both Max/MSP and
Pd are much more stable, and are quite usable
for some forms of music based on regular pul-
sation. However, their performance is still sub-
ject to variability based on factors such as the
signal vector size and competition from control-
level events. Furthermore, the scheduling sys-
tems of Max/MSP and Pd differ such that the
timing behavior of similar patches can perform
quite differently between the two systems. The
Max/MSP event scheduler is prone to perma-
nently drift from a sample accurate measure-
ment of timing. The underlying Pd event sched-
uler is better than sample-accurate, though ap-
parently at the cost of a higher likelihood of
interruption of the audio scheduler, resulting
in audible glitches. In both systems temporal
accuracy of control-level events can drift freely
within the space of a signal vector.

2.1 The Problem with Small Time
Deviations

Even when the amount of deviation from sample
accuracy is not clearly noticeable at a rhyth-
mic level, it may still have undesirable musi-
cal effects. For example, a pulsation may feel
not quite right when there are a few 10s of
milliseconds of inaccuracy in the timing from
beat to beat. Even smaller inaccuracies, though
rhythmically acceptable, can still cause prob-
lems when sequencing sounds with sharp tran-
sients, since changes in alignment on the order
of a couple of milliseconds will create different
comb filtering effects as the transients slightly
realign on successive attacks. This is a partic-
ularly insidious artifact since many users might
not think to trace a spectral effect to a system
timing flaw.

3 Sketch of a Solution

One way to sidestep the abovementioned prob-
lems is to program trigger scheduling at the
sample level, rather than at the event level at
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which bangs perform. This scheduling must be
built into every external that is to benefit from
sample accurate triggering. In order to be of
much use, such externals must be able to easily
synchronize with each other. I have developed a
system of externals based on click triggers. The
trigger signal contains a non-zero value at every
sample where a trigger is to be sent, and zeros
at all other samples. The click trigger can con-
vey one additional piece of information to its
receiver, such as desired amplitude.

4 Sample Accurate Metronomes

The centerpiece of the system is an exter-
nal that coordinates multiple metronomes. It
is called samm~ (for sample accurate multiple
metronomes). The first argument to samm~ is
the tempo in BPM, followed by a series of beat
divisors that each define the metronome speed
for a corresponding outlet. For example, the ar-
guments 120 1 2 3 7 would activate four outlets,
all beating at 120 BPM, the first at a quarter
note, the second at an eighth note, the third
at an eighth note triplet and the fourth at a
sixteenth note septuplet. Any of these param-
eters can have fractional components, and the
beat divisors may be less than 1.0 (resulting in
beat durations greater than a quarter note). A
click trigger from samm~ is always a sample with
the value 1.0. The tempo can be varied during
performance while preserving proportional rela-
tions among all beat streams.

4.1 Alternative Metronome
Specifications

For convenience, several different methods are
provided for specifying metronome tempi . A
new set of beat divisors may be specified with
the message ”divbeats.” Beat durations may be
specified directly in milliseconds with the mes-
sage ”msbeats.” Beats may be specified in sam-
ples (useful if tempi need to be built around a
soundfile in terms of its length in samples) with
the message ”sampbeats.” Finally beat dura-
tions may be specified with ratio pairs (with
the denominator representing a division of a
whole note) using the message ”ratiobeats.”
The message ”ratiobeats 1 4 3 16 5 28” speci-
fies relative beat durations of respectively a
quarter note, a dotted eighth note and five sep-
tuplets. Fractions may be employed to repre-
sent more complex ratios, though it is proba-
bly simpler in that case to represent such ratios
with decimal numbers and use the ”divbeats”
message.

5 Pattern Articulation

The beat streams from samm~ can be pat-
terned into arbitrary rhythms with another
external called mask~. This external stores
a sequence of numbers, which are sent out
in cyclic series in response to click triggers.
An initial series is given as a set of argu-
ments to mask˜. For example, the arguments
1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 could serve to de-
fine a rhythmic pattern for a single instrument
in a drum machine, in this case perhaps a kick
drum. Since zeros cannot trigger an attack, any
zero in a mask~ pattern will convert an incom-
ing beat to a rest. Since any non-zero num-
ber can serve as a trigger, the attacks need not
all have value ”1” but could specify different
amplitudes instead. Multiple mask~ instances
could control different parameters of the same
event, all sample-synched. Since mask~ patterns
can be of any size (up to 1024 members), dif-
ferent sized mask~ patterns will cycle in and
out of phase with each other, which is desir-
able in a poly-metric scheme. It is also possible
for two mask~ patterns of the same size to be
out of sync with each other if, for example, one
mask~ was created later in the design of a given
patch. This loss of sync is usually not desirable.
Thus, mask~ provides an option whereby the
input is interpreted not as triggers, but rather
as index numbers used to iterate through the
mask~ pattern. Using the same indexing clicks
(generated from another mask~ of course) guar-
antees that all patterns so controlled remain
locked in phase. Any mask~ external can hold
a large number of different patterns which may
be stored and recalled during performance.

6 Sample Accurate Synthesizers

Sample accurate externals are provided for
sound production through both sampling and
synthesis. adsr~, an external that is already
part of my Web-published Max/MSP external
set LyonPotpourri (Lyon 2003)is an ADSR en-
velope generator. I have retrofitted adsr~ to
respond to click triggers, interpreting the value
of the click as the overall amplitude of the en-
velope. Any software synthesis algorithm that
uses adsr~ as an envelope can now be triggered
with sample accuracy.

7 Sample Accurate Samplers

A sample playback external called player~ is
provided, which plays back a sample stored in a
buffer (for Max/MSP) or an array (for Pd). The
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two parameters to player~ are amplitude and
playback increment, sent as signals to the first
and second inlets respectively. Amplitude is al-
ways a click trigger. Under normal conditions,
playback increment is a signal that can be ma-
nipulated during performance. An alternative
static increment mode is provided, called by the
‘static increment’ message, in which the play-
back increment is also received as a click trig-
ger, which persists throughout the note play-
back without variation.

7.1 Polyphonic Nature of player˜
One important feature was added for conve-
nience - player~ is polyphonic (up to 16 voices
at present, though this limit may be opened up
to the user as a parameter in a later version).
An inconvenient feature of groove~, tabosc4~,
et. al. is that if a note is currently active when a
new playback trigger arrives, the current note is
instantly truncated which often creates discon-
tinuities. In player~, all currently active notes
continue playing to the end of their buffers, even
as new attack triggers arrive. This is much
more convenient than having to create a poly
structure for every member of a drum machine.
This is also the reason for the static increment
mode. In static increment mode multiple in-
stances of playback can proceed at different
playback increments, which is quite handy for
creating polyphony from a single sample.

8 Putting the Pieces Together - a
Simple Drum Machine

Now let’s look at an example of how the exter-
nals described thus far can be combined. (See
Figure 1.) A samm~ unit with a tempo of 120
BPM creates two beat streams, the first divid-
ing the quarter by two (eighth-notes) and the
second dividing the quarter by four (sixteenth-
notes). Two player~ objects play back sam-
ples stored in two arrays. The bdbuf player~
takes its metronome from the eighth-note beat
stream. Its attack/amplitude pattern is stored
in the mask~ object directly above it. The incre-
ment is fixed at 1.0, taken from a sig~ object.
The output is scaled and sent to the DACs.

8.1 Polyrhythmic Sequencing
The hihat structure is slightly more compli-
cated than that of the bass drum. The beat
stream is sixteenth-notes in all cases. The du-
ration of the attack/amplitude pattern is one
beat, rather than the four beats of the bass
drum pattern. But a second pattern with a

Figure 1: A two voice drum machine.

periodicity of three sixteenth-notes controls the
increment from a second mask~ object routed
to the second (increment) inlet of the hatbuf
player~. A third rhythmic level is added as
the hihat output is ring-modulated by the sine
wave output of an osc~ object. The osc~ is
controlled by a frequency pattern with a peri-
odicity of five sixteenth-notes. A custom ob-
ject, clickhold~is inserted between the mask~
and the osc~ to sample and hold each click as
it comes in, resulting in the sustained frequency
signal required by osc~. As the three different
patterns go in and out of phase with each other,
a composite 15-beat pattern emerges. More
complex polyrhythmic arrangements are easily
imagined, especially to control various parame-
ters of synthesis algorithms rather than the rel-
atively simple sample playback.

8.2 You Call That a Drum Machine?

It is quite clear that the Pd patch shown in Fig-
ure 1 does not look anything like a conventional
drum machine. Of course it is possible to use
some graphical objects to wire up an interface
that that looks more like a drum machine and
serves as a front end, generating patterns for
the mask~ objects. But this sort of tidy front
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end would also limit our possibilities. The very
looseness of the scheme of distributed mask~ ob-
jects suggest more fluid ways of thinking about
drum patterns, and manipulating them during
performance.

9 dmach˜ - an Integrated Drum
Machine External

The combined use of samm~ and mask~ can cre-
ate arbitrarily complex rhythms. However cer-
tain kinds of rhythms are somewhat inconve-
nient to specify under this model. Consider a
4/4 bar pattern where the first beat is divided
into 16th notes, the second beat into triplets,
and the last two beats divided into eighth-
note quintuplets. A representation of this pat-
tern requires three different beat streams and
three different mask˜ objects. In order to ad-
dress this problem, a proof-of-concept exter-
nal called dmach~ has been designed. dmach~
contains an internal clock, and stores user-
specified patterns. The patterns are sent as
outlet pairs; dmach~ is designed to send both
attack patterns and increment patterns. These
patterns can be recalled at will during the per-
formance. The current pattern is looped until
such time as a new one is recalled. Patterns
are stored with the ’store’ message and recalled
with the ’recall’ message. The current pattern
is played to completion before a new pattern is
loaded, thus guaranteeing a sample-synced per-
formance. The last outlet of dmach~ sends a
click at the start of each pattern playback, mak-
ing it easy for the user to build a sequencer for
stored patterns.

9.1 Pattern Specification for dmach˜
Pattern specification in dmach~ allows for arbi-
trary bar sizes and arbitrary subdivisions within
the bar. Patterns are entered into dmach~ with
the ’store’ message. The first two parameters
are the pattern number and the number of beats
in the bar. The pattern number is an integer
which will be used to recall the pattern. The
number of beats is defined as the number of
quarter notes in a bar. A specification of 4 cre-
ates a 4/4 bar. A 3/8 bar would be specified
with a bar duration of 1.5. Following are a se-
ries of beat patterns, each one targeted toward
a different instrument. The first parameter is
the designated instrument. (Instrument 0 has
its beat stream come out of the first outlet, and
its increment stream out of the second outlet
of dmach~.) Next is a beat duration represent-
ing a segment of the bar. If the entire beat

Figure 2: A dmach~ two voice drum machine.

pattern shares a single subdivision of the beat,
then this segment would simply be the same as
the bar duration. However since an arbitrary
number of segments can be specified (on con-
dition that they eventually add up to precisely
the bar duration), an arbitrary rhythmic sub-
division of the bar is possible, which could be
quite complex. Following the segment duration
is the segment subdivision factor. This subdi-
vision must be an integer. Following this is an
attack pattern that must have the same num-
ber of elements as the subdivision factor just
specified. Following the attack pattern is the
increment pattern. The increment pattern has
the same number of elements as non-zero at-
tacks in the attack pattern. In other words,
increments are specified only for attacks, not
for rests. Additional segments are identically
specified until the duration of the bar is filled.
This process is repeated for every instrumental
beat/increment stream required for the pattern.
Data is only required for instruments that play
in a given pattern. A pattern with no instru-
ment data functions as a bar of rest.

9.2 Usability of dmach˜

As mentioned above, dmach~ is a proof-of-
concept external. Complete error checking on
user input to dmach~ is a thankless task that
has not yet been undertaken, thus it is presently
easy to crash dmach~ with bad data, taking
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down Pd or Max/MSP with it. Given the in-
tricacy of the data format, it is recommended
that a preprocessor be used to generate the data
from a more user-friendly interface than typing
raw data by hand. It is interesting to consider
what might be a suitable graphical interface to
design patterns for dmach~ though such consid-
erations are beyond the scope of this paper. The
complexity of pattern specification for dmach~,
while potentially burdensome, is also necessary
in order to obtain full rhythmic flexibility. In-
deed this flexibility goes considerably beyond
what is possible with most commercial drum
machines. However as mentioned above, the
user can be buffered from this complexity with
a suitable interface, at the cost of some loss of
flexibility in pattern design. As can be seen in
Figure 2, the data complexity is localized in the
’store’ messages, so the patching structure for
wiring up a drum machine in Pd with dmach~
is somewhat simpler than in the earlier example
with multiple mask~ objects.

9.3 Relative Inflexibility of dmach˜

While it is convenient to bind increment pat-
terns to attack patterns in dmach˜ this arrange-
ment is somewhat inflexible. The user might
prefer not to control increment, or to control
increment out of sync (or even randomly) in
which case the additional outlets for increment
become superfluous, as does the burden of spec-
ifying increment pattern in the ’store’ messages.
On the other hand, one might well wish to si-
multaneously control parameters other than or
in addition to increment, such as pan location,
filter parameters, ring modulation frequency or
multiple synthesis parameters, if a software syn-
thesizer is being driven by a particular dmach~
beat stream.

9.3.1 Increasing Flexibility for dmach˜
A simple method to increase the flexibility of
dmach~ would use the second beat stream outlet
to send attack index numbers which could then
be used to control multiple mask~ objects. This
would give full flexibility, though the pattern
data would in most cases be spread over mul-
tuple mask~ objects. In some cases this could
be an advantage since individual data streams
could be changed independently during perfor-
mance. A more complicated solution would al-
low the user to specify the structure of a given
dmach~ object through its creation arguments,
such that a given beat pattern could have an ar-
bitrary number of outlets in addition to its at-

tack pattern outlet. This would keep all the pat-
tern data in a single ’store’ message. However
the complexity of maintaining data in this form,
along with the possibility of eventually bump-
ing up against the hard limit on the number
of atoms allowed in a Max/MSP or Pd message
box, might make this solution unwieldy in prac-
tice. However a sufficiently flexible graphical in-
terface that could create and manage the data
in the ’store’ messages with arbitrary structure,
might make this approach worth pursuing. As
mentioned above, dmach~ is still a prototype
object, which is not yet ready for prime-time.
However dmach~ does raise interesting questions
about structuring control data within the sam-
ple accurate triggering system under discussion.

10 Interoperation with Sample
Inaccurate Externals

Many useful externals exist in Pd and
Max/MSP which do not currently provide sam-
ple accurate response to triggers. In order
to utilize such externals in the system pre-
sented here, they must be triggered with a
bang synchronized to the incoming click trigger.
Max/MSP makes this quite easy to do via the
edge~ external which sends bangs on changes
from one to zero. Since edge~ is only avail-
able for Max/MSP, a custom external called
click2bang~ has been designed to send out a
bang in response to an incoming click. The bang
can only be accurate to within the size of the
signal vector. However the receiver can be iso-
lated in a sub-patch with a signal vector size set
to 1 by the block~ object, forcing that part of
the patch back to sample accuracy.

11 Clicks and Continuity

While click triggers are conceptually simple and
thus easy to work with in designing patches,
they do have one disadvantage. Once sent there
is no further information on the progress of a
triggered process until the next click is received.
For the types of data discussed here this is not a
problem. However certain continuous processes
such as filter sweeps might need to be corre-
lated to the progress of a given time span. For
most practical purposes a line or line~ object
triggered by an appropriate message (itself trig-
gered by a click2bang~) will suffice. However
it would be fairly easy to design an external that
outputs precise continuous data in response to
click triggers. We might call such an external
clickline~ which would receive a target value
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and the duration over which to interpolate from
a stored initial value to the target value, with
all data sent as clicks.

12 Conclusions and Future Work

The click trigger model has proved easy to im-
plement, useful for designing rhythmic patches
in Pd and Max/MSP and enables a degree of
timing precision for rhythmic events that is not
generally practical for Pd and Max/MSP. I plan
to incorporate this model into any future exter-
nals I design. In the spirit of generosity, I will
suggest future work for others as well as for my-
self. There has been increased interest in the
Max/MSP community for sample-accurate tim-
ing. Some more recent (and recently updated)
Max/MSP object such as sfplay~ and techno~
employ sample-accurate triggering, albeit gen-
erally using more complicated methods than the
click triggering system described here. It would
be nice to see a unified sample-accurate trigger-
ing system employed to encompass the many
Pd and Max/MSP externals that could benefit
from it, such as tabplay~ and groove~. Third
party developers of externals might also find
this model useful for any of their objects that
involve triggering. Finally, all of the work de-
scribed here is based on steady pulses. However
it would be interesting to develop metronomes
that implement arbitrary tempo curves, which
would also output click triggers. This would al-
low for sample-accurate exploration of a very
different class of rhythms.
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Abstract 

This article introduces a scripting environment for 
Csound 5. It introduces the Csound 5 API and 
discusses it use in the development of a TclTk 
scripting interface, TclCsound. The three 
components of  TclCsound are presented and 
discussed. A number of applications, from simple 
transport control of Csound to client-server 
networking are explained in some detail. The 
article concludes with a brief overview of some 
other Csound 5 language APIs, such as Java and 
Python. 

 
Keywords: Music Programming Languages; 
Scripting Languages;  Computer Music 
Composition. 

1 Introduction 

The Csound music programming system  (Vercoe 
2004) is currently the most complete of the text-
based audio processing systems in terms of its unit 
generator collection. Csound hails from a long 
tradition in Computer Music. Together with 
cmusic (Moore 1990), it was one of the first 
modern C-language-based portable sound 
compilers (Pope 1993), when it was released in 
1986. Due to its source-code availability, first from 
the cecelia MIT ftp server and then from the 
DREAM site at Bath, it was adopted by composers 
and developers world-wide. These brave new 
people helped it to develop into a formidable tool 
for sound synthesis, processing and computer 
music composition. Its latest version, Csound 5 
(ffitch, 2005) has close to one thousand opcodes, 
ranging from the basic table lookup oscillator to 
spectral signal demixing unit generators. 
 
Many important changes have been introduced in 
Csound5, which involved a complete redesign of 
the software. This resulted not only in a better 
software, from an engineering perspective, but in 
the support for many new possible ways of using 
and interacting with Csound. 
 

An important development has been the 
availability of a complete C API (the so-called 
‘Host API’, which was, in fact, already partially 
present in earlier versions). The API can be used to 
instantiate and control Csound from a calling 
process, opening a whole new set of possibilities 
for the system. 

2 The Csound 5 API 

The Csound 5 Host API allows the embedding of 
the audio processing system under other ‘host’ 
software. Effectively, Csound is now a library, 
libcsound, that can provide audio services, such as 
synthesis and processing, for any application. This 
allows for complete control over the functioning of 
the audio engine, including transport control, 
loading of plugins, inter-application sofware bus, 
multithreading, etc.. A ‘classic’ csound command-
line program can now be written based only on a 
few API calls: 
 
#include <csound.h> 
int main(int argc, char **argv) { 
 
int result;  
CSOUND *cs; /* the csound instance */ 
 
/* initialise the library */ 
csoundInitialize(&argc, &argv, 0); 
/* create the csound instance */ 
cs = csoundCreate(NULL); 
/* compile csound code  */ 
result = csoundCompile(cs, argc, argv); 
/* this is the processing loop */ 
if(result) while(csoundPerformKsmps(cs)==0); 
/* destroy the instance */ 
csoundDestroy(cs); 
return 0; 
} 

 
The Csound API can be used in many applications; 
the development of frontends is the most obvious 
of these. A good example of its application is 
found on the csoundapi~ Class, which provides a 
multi-instantiable interface to Csound 5 for Pure 
Data. The Csound API is the basis for TclCsound 
(Lazzarini 2005), a Tcl/Tk extension, discussed in 
the next section. 
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3 TclCsound 

The classic interface to csound gives you access to 
the program via a command-line such as 
 
csound -odac hommage.csd 

 
This is a simple yet effective way of making 
sound. However, it does not give you neither 
flexibility nor interacion. With the advent of the 
API, a lot more is possible. At this stage, 
TclCsound was introduced to provide a simple 
scripting interface to Csound. Tcl is a simple 
language that is easy to extend and provide nice 
facilities such as easy file access and TCP 
networking. With its Tk component, it can also 
handle a graphic and event interface. TclCsound 
provides three ‘points of contact’ with Tcl: 
 
1. a csound-aware tcl interpreter (cstclsh) 
2. a csound-aware windowing shell (cswish) 
3. a csound commands module for Tcl/Tk 
(tclcsound dynamic lib) 
 

3.1 The Tcl interpreter: cstclsh 

With cstclsh, it is possible to have interactive 
control over a csound performance. The command 
starts an interactive shell, which holds an instance 
of Csound. A number of commands can then be 
used to control it. For instance, the following 
command can compile csound code and load it in 
memory ready for performance: 
 
csCompile -odac hommage.csd -m0 
 
Once this is done, performance can be started in 
two ways: using csPlay or csPerform. The 
command 
 
csPlay 

 
will start the Csound performance in a separate 
thread and return to the cstclsh prompt. A number 
of commands can then be used to control Csound. 
For instance, 
 
csPause 

 
will pause performance; and 
 
csRewind 

 
will rewind to the beginning of the note-list. The 
csNote, csTable and csEvent commands can be 
used to add Csound score events to the 
performance, on-the-fly. The csPerform command, 
as opposed to csPlay, will not launch a separate 
thread, but will run Csound in the same thread, 
returning only when the performance is finished. A 

variety of other commands exist, providing full 
control of Csound. 

3.2 Cswish: the windowing shell 

With Cswish, Tk widgets and commands can be 
used to provide graphical interface and event 
handling. As with cstclsh, running the cswish 
command also opens an interactive shell. For 
instance, the following commands can be used to 
create a transport control panel for Csound: 
 
frame .fr 
button .fr.play -text play -command csPlay 
button .fr.pause -text pause -command csPause 
button .fr.rew -text rew -command csRewind 
pack .fr .fr.play .fr.pause .fr.rew 
 
Similarly, it is possible to bind keys to commands 
so that the computer keyboard can be used to play 
Csound. 
 
Particularly useful are the control channel 
commands that TclCsound provides. For instance, 
named IO channels can be registered with 
TclCsound and these can be used with the invalue, 
outvalue opcodes. In addition, the Csound API also 
provides a complete software bus for audio, control 
and string channels. It is possible in TclCsound to 
access control and string bus channels (the audio 
bus is not implemented, as Tcl is not able to handle 
such data).  With these TclCsound commands, Tk 
widgets can be easily connected to synthesis 
parameters.  

3.3 A Csound server 

In Tcl, setting up TCP network connections is very 
simple. With a few lines of code a csound server 
can be built. This can accept connections from the 
local machine or from remote clients. Not only 
Tcl/Tk clients can send commands to it, but TCP 
connections can be made from other sofware, such 
as, for instance, Pure Data (PD). A Tcl script that 
can be run under the standard tclsh interpreter is 
shown below. It uses the Tclcsound module, a 
dynamic library that adds the Csound API 
commands to Tcl. 
 
# load tclcsound.so  
#(OSX: tclcsound.dylib, Windows: tclcsound.dll) 
load tclcsound.so Tclcsound 
set forever 0 
 
# This arranges for commands to be evaluated 
proc ChanEval { chan client } { 
if { [catch { set rtn [eval [gets  $chan]]} 
err] } { 
puts "Error: $err" 
} else { 
puts $client $rtn 
flush $client 
} 
} 
 
# this arranges for connections to be made 
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proc NewChan { chan host port } { 
puts "Csound server: connected to $host on port 
$port ($chan)" 
fileevent $chan readable [list ChanEval $chan 
$host] 
} 
 
# this sets up a server to listen for  
# connections 
set server [socket -server NewChan 40001] 
set sinfo  [fconfigure $server -sockname] 
puts "Csound server: ready for connections on 
port [lindex $sinfo 2]" 
vwait forever 
 

With the server running, it is then possible to set 
up clients to control the Csound server. Such 
clients can be run from standard Tcl/Tk 
interpreters, as they do not evaluate the Csound 
commands themselves. Here is an example of 
client connections to a Csound server, using Tcl: 
 
# connect to server 
set sock [socket localhost 40001] 
 
# compile Csound code 
puts $sock "csCompile -odac hommage.csd" 
flush $sock  
 
# start performance 
puts $sock "csPlay"   
flush $sock  
 
# stop performance 
puts $sock "csStop" 
flush $sock 
 

As mentioned before, it is possible to set up clients 
using other software systems, such as PD. Such 
clients need only to connect to the server (using a 
netsend object) and send messages to it. The first 
item of each message is taken to be a command. 
Further items can optionally be added to it as 
arguments to that command. 

3.4 A Scripting Environment 

With TclCsound, it is possible to transform the 
popular text editor e-macs into a Csound 
scripting/performing environment. When in Tcl 
mode, the editor allows for  Tcl expressions to be 
evaluated by selection and use of a simple escape 
sequence (ctrl-C ctrl-X). This facility allows the 
integrated editing and performance of Csound and 
Tcl/Tk code.  
 
In Tcl it is possible to write score and orchestra 
files that can be saved, compiled and run by the 
same script, under the e-macs environment. The 
following example shows a Tcl script that builds a 
csound instrument and then proceeds to run a 
csound performance. It creates 10 slightly detuned 
parallel oscillators, generating sounds similar to 
those found in Risset’s Inharmonique. 
 

load tclcsound.so Tclcsound 
 
# set up some intermediary files 
set orcfile "tcl.orc" 
set scofile "tcl.sco" 
set orc [open $orcfile w] 
set sco [open $scofile w] 
 
# This Tcl procedure builds an instrument 
proc MakeIns { no code } { 
global orc sco 
puts $orc "instr $no" 
puts $orc $code 
puts $orc "endin" 
} 
 
# Here is the instrument code 
append ins "asum init 0 \n" 
append ins "ifreq = p5 \n" 
append ins "iamp = p4 \n" 
 
 
for { set i 0 } { $i < 10 } { incr i } { 
append ins "a$i  oscili iamp,   
         ifreq+ifreq*[expr $i * 0.002], 1\n" 
} 
 
for { set i 0 } {$i < 10 } { incr i } { 
    if { $i } { 
         append ins " + a$i" 
    } else { 
         append ins "asum = a$i " 
    } 
} 
 
append ins "\nk1 linen 1, 0.01, p3, 0.1 \n" 
append ins "out asum*k1" 
 
# build the instrument and a dummy score 
MakeIns 1 $ins 
puts $sco  "f0 10" 
 
close $orc 
close $sco 
 
# compile 
csCompile $orcfile $scofile -odac -d -m0 
 
# set a wavetable 
csTable 1 0 16384 10 1 .5 .25 .2 .17 .15 .12 .1 
 
# send in a sequence of events and perform it 
for {set i 0} { $i < 60 } { incr i } { 
 
    csNote 1 [expr $i * 0.1] .5 \ 
      [expr ($i * 10) + 500] [expr 100 + $i * 
10] 
 
} 
 
csPerform 
 
# it is possible to run it interactively as  
# well 
csNote 1 0 10 1000 200 
csPlay 

 
The use of such facilities as provided by e-macs 
can emulate an environment not unlike the one 
found under the so-called ‘modern synthesis 
systems’, such as SuperCollider (SC). In fact, it is 
possible to run Csound in a client-server set-up, 
which is one of the features of SC3. A major 
advantage is that Csound provides about three or 
four times the number of unit generators found in 
that language (as well as providing a lower-level 
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approach to signal processing, in fact these are but 
a few advantages of Csound).  

3.5 TclCsound as a language wrapper 

It is possible to use TclCsound at a slightly lower 
level, as many of the C API functions have been 
wrapped as Tcl commands. For instance it is 
possible to create a ‘classic’ Csound command-line 
frontend completely written in Tcl. The following 
script demonstrates this: 
 
#!/usr/local/bin/cstclsh 
set result 1 
csCompileList $argv 
while { $result != 0 } { 
set result csPerformKsmps 
} 
 
This script is effectively equivalent to the C 
program shown in section 2. If saved to, say, a file 
called csound.tcl, and made executable, it is 
possible to run it as in 
 
csound.tcl –odac hommage.csd 
 

4 OTHER LANGUAGE WRAPPERS 

It is very likely that many users will prefer to run 
Csound from their  programming environment of 
choice. For these, C++, Lisp (using CFFI), Java 
and Python are other available languages. Access 
to the Csound library is provided by SWIG-
generated wrappers. 
 

4.1 Python and Java examples 

 
The way these languages interact with the Csound 
5 library is very similar to the C API. A major 
difference is that they are require to import the 
Csound module (based on a ‘native’ library 
module), called csnd. In Python, the csnd.py and 
csnd.pyc files, distributed with Csound, hold the 
Python API, whereas in Java, the csnd.jar archive 
holds the csnd package. 
  
Generally, for a straight performance, the steps 
involved are: 
 
1. Create a Csound instance: 

 
Java: 
  cs = new Csound(); 

 
Python: 
  cs = csnd.csoundCreate(None); 

 
2. Compile Csound code: 
 
Java: 

  cs.Compile(“hommage.csd”); 
 
Python: 
  csnd.csoundCompile(cs, 2,    
         [‘csound’, ‘hommage.csd’]) 
    
3. Run a processing loop: 
 
Java: 
  int result; 
  while(result == 0)  
     result = cs.PerformKsmps();  
 
Python: 
  while result == 0: 
     result =csoundPerformKsmps(cs); 
    
4. Clean up, ready for a new performance: 
 
Java: 
  cs.Reset(); 
 
Python: 
  csnd.csoundReset(cs);    
     
The Java and Python wrappers open up many new 
possibilities for using Csound programmatically. 
There are, though, a few aspects of the C API, 
which are very C-specific and do not translate into 
Java or Python. However, these should not make 
any impact on the majority of the applications that 
the system might have. 
 
5. Conclusion and Future Prospects 
 
Csound is a very comprehensive synthesis and 
musical signal processing environment. The 
additional facilities provided in its latest version 
have brought it up-to-date with more modern 
software engineering concepts. Its existence as a 
library has enabled a variety of new uses and 
added  new ‘entry-points’ into the system. It is 
very likely that such enhancements will also spur 
further features, esp. when the new parser for the 
language, under development by John ffitch, is 
introduced. It will then be possible to develop 
other ways of interacting with the system, such as 
alternative synthesis languages, interpreters and 
further facilities for networking and distributed 
operation.     
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Abstract
The perception of Linux audio software
amongst so-called ”average musicians” with
no ”geek”background is not as positive as it could
be. Many musicians still think that there is not
enough usability and too little Linux software
available to produce an album. This proposal
introduces design studies for a user interface dedi-
cated to a Linux Audio Workstation (LAW) that
I intend to build based on standard PC hardware.
The interface intends to integrate all the main
virtues of Linux audio software in a logical and
self explanatory way, without encumbering their
flexibility, to provide the same level comfort and
intuitive operation as offered by suites such as
Steinberg’s Cubase. There will be no install-CD to
be downloaded, as offered by Distros like Demudi or
Agnula, but only some useful scripts and LFS-style
documentation to enable people to rebuild the box
itself if they wish to do so.

Keywords
usability, integration, suite, interface, workstation

1 Introduction

Musicians often state that they don’t know very
much about computers, that they only want to
use these boxes and that they have neither the
time nor motivation to learn how a computer
or software works. Proprietary software ven-
dors try to adapt to such attitudes by design-
ing all-in-one applications, such as Steinberg’s
Cubase, with simple-looking interfaces and au-
tomatic setup assistants that leave power usage
and fine tuning to the experienced users and
hide possible options and - of course - the source
code from the ”end user” to keep their products
under control and consistent.

This is not the way that Linux audio can go,
since it is open source. Free software authors, as
well as the distributors, need to develop other
ways to achieve usability and a trustworthiness
that meets the needs of productive use. This
can be done if the whole audio workstation is de-
veloped and built as an integrated combination

of software and hardware components, that fit
together and are Linux compatible down to the
last screw.

Some may ask:

is this still possible without charg-
ing the users for software ?

we say: It is! - if we find a way to charge the
users for integration and support... it is our be-
lief that the time is nigh to make people invest
in free audio software development. People like
Paul Davis, Taybin Rutkin or Werner Schweer
should be rewarded for their work. We believe
that a reasonable part of the revenue that could
be generated with oss-based audio workstations
should go directly to the developers of the most
important software for these boxes - especially
if these developers do not yet receive any rea-
sonable financial support.

To make sure that the system as a whole
works flawlessly enough for studio use, it will
be necessary to setup and test each box by hand
before shipping. We did so in Suse 9.3 to build
the first prototype - on the second box, that
we plan to build in June, it will be done with
Ubuntu including packages from the Ubuntu
studio metadistribution. The project does not
intend to add another distribution, toolbox or
file format to the already existing mass of exper-
iments in Linux audio - we only want to help
others using all the great stuff that is already
there. So all scripts will be native, average
bash-syntax and XML as used in xfce4. The
LAW itself will be built, set up and tuned by
hand, the scripts will be usable in every Linux-
environment that has xfce4 and the incorpo-
rated applications.

2 plans and sketches

Most users coming from proprietary tools, such
as Steinberg Nuendo or SEKD Samplitude, have
a rather ambivalent impression of the system
when looking at Linux solutions. On the one
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hand they like tools such as Jamin or snd, but
on the other hand they are disappointed by the
lack of features that they have commonly come
to expect in proprietary applications. The con-
cept that a complex system can be built out of
many little tools that provide each other with
functions is not very common amongst users of
proprietary systems1.
So to add the comfort known from commer-
cial suites to the Linux audio tools, primarily
means integrating all the little, cute and pow-
erful free tools to make them work properly to-
gether, without limiting their flexibility.

What have we left behind in our Fat32 parti-
tions?

Applications such as Steinberg’s NUENDO
can be used to record a complex album without
learning more then half a dozen keyboard com-
mands (though one can use hundreds of them
- if you wish...) i.e.: you only have to learn to
understand the metaphors for things that you
already know from hardware mixers, recorders
and FX boxes, to make NUENDO work for you
- you do not need to know about computers, be-
cause the GUI makes it look as if it where some
space age version of the hardware that you al-
ready know.2.

Under the hood one could find a framework
made of engines, plug-in-interfaces and routing
mechanisms, quite similar to jack and ladspa,
the main difference is indeed the GUI: you
don’t need to think about it: everything in one
place and all needed functions labelled more or
less descriptively in more or less logical menus.
Right click - double click and sometimes CTRL
or Shift - that’s it. There are 2 prerequisites for
this type of comfort:

1. Every part of the suite works with the given
drivers and its interface fits with the rest.

2. The parts do not conflict with each other

Both can be achieved with free components
under Linux, but it takes a lot of effort to set
it up and there is still no integrated user inter-
face that allows truly intuitive work with the
full power of available possibilities and without

1there is indeed buzz and of course PD for MS Win-
dows - but those who know these systems well are not in
desperate need for clickable wrapper-scripts in Linux....

2Steinberg even tries to resemble the look of real
equipment by using bitmaps that look rusty and
scratched - just like the stomp boxes you are familiar
with...

unwanted surprises. The ingredients of applica-
tions such as NUENDO are available for Linux
and PC hardware properly supported by Linux
is also available. So the first steps to build a
Linux Audio Workstation would be:

1. To design a hardware setup for a reason-
able price, that fits perfectly together and
is completely Linux proof.

2. To develop a set of scripts and consis-
tent templates and presets that allow the
user to switch on the full force of a jack-
environment with a single click.

Commercial developers have a major advan-
tage over Linux hackers: the proprietary Sys-
tems (i.e. MS Windows XP and Mac OSX)
are consistent, applications can be monolithic
and survive for years with few changes. Testing
and development is easier with less diversity. If
Linux software is installed as a binary package
and automatically set up, then Linux will not
be as stable and consistent as is required. Many
developers work on Fedora or Debian and most
of them massively alter/tune their systems - so
that users who try to to run preconfigured ap-
plications on out-of-the-box systems from Nov-
ell or Mandriva will be confronted with the un-
predictable effects of diversity. Since we cannot
relay on consistency - we need to use the di-
versity and freedom of free software to prove
that free development can lead to the same and
even better functionality as known from com-
mercial vendors. Whereas the basic system
can safely be installed automatically, the im-
portant applications (jackit, ardour, muse and
around 12 more) have to be compiled at the box
with sane ./configure-flags and the whole sys-
tem setup needs to be examined, adapted and
thoroughly tested by humans. To limit the ef-
fort to a level that can be reached with a small
financial budget and in reasonable time, there
can be only 1 PC setup and maybe 1 or two lap-
top machines. The latter will be compromised
versions because they must more often serve as
office/web-machines than a PC built as a dedi-
cated audio workstation.
To those who want to use our system with-
out purchasing or rebuilding the whole box,
we recommend using Ubuntu Linux dapper
drake to install the needed components. We
have also started a tutorial in the wiki of
http://www.audio4linux.de, that describes ev-
ery step to set up the stuff on Ubuntu dapper
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drake, and also provides links to download the
needed files.
The main goal of the native approach is stabil-
ity. No bleeding-edge components, no x86 64-
CPU and no beta/cvs versions of software, as
far as this can be avoided. The Workstation
should start out of the box up to kdm/gdm with
no configuration needed (while still retaining all
the configuration possibilities that the user may
wish for). The user will have the opportunity of
choosing between 3-4 preconfigured setups:

• Audio workstation (preset-configuration
with factory support, guaranteed function-
ality, limited configurability)

• Audio workstation experimental (same
preset-configuration as above, but with
full configurability, limited support and no
guarantee - this would also be available for
download.)

• PC Workstation (Standard home computer
with all the power of a Linux desktop sys-
tem, Internet, office, graphics/layout etc.)

• Rescue system (with direct access to
scripts, that reset configurations and replay
backups - this may be offered at the boot
screen)

Sometimes the question arises, do we make
this with KDE or GNOME? Since both systems
are used to provide typical desktop automation
mechanisms (office, pim etc) they are not op-
timal for an audio workstation. An exception
to this is the ”PC Workstation”. Whereas this
may work with KDE, the audio systems and
the rescue system were set up with Fluxbox,
which appeared to us to be the best compromise
between leanness and configurability/comfort.
Experimenting with other WMs finally led us to
the decision to switch to fxce. It is leaner then
KDE or GNOME and as scriptable as Fluxbox,
but also comes with some very useful features
such as multiple menus and bitmap icons for
a more descriptive interface. However, all the
scripts, templates and presets can be used in
any Desktop environment - templates and pre-
sets rely on fitting versions of the respective
audio applications and the scripts only require
bash ... KDE-base must be also installed, since
the wrapper scripts utilise kdialog to display
messages and konqueror is used to show HTML
help pages.

2.1 What exists already and how we
are different

There are both integrated hardware solutions
with Linux and CD and/or metadistros avail-
able for installation out there. The hard-
ware systems are designed and priced for semi-
professionals and we don’t know of any Linux-
based audio solution that is also a decent Desk-
top PC. Our aim is to provide a box that can
be built for about 700,- EUR and that can also
serve as a Desktop/Internet computer.
The installable Distros such as Demudi, jacklab
or CCRMA all have one thing in common: they
work with binaries, they do little to integrate
the apps and they leave the choice and setup
of the hardware to the user. All these people
still do great work and it is definitely not our
intention to replace any of them, but rather to
collaborate with them.
We are not trying to build our own little world,
but wish to incorporate things that are already
there and glue them together in a useful way.
As mentioned before, we primarily deliver sim-
ple wrapper scripts, presets, templates and sam-
ples. These will work on any distro that has
the software installed, which is called by these
scripts and can handle these presets etc. On the
box that we ship, the same things will run like a
charm (no kidding - our concept allows intense
testing of the very machine that will be deliv-
ered - so unwanted surprises will be seldom...) -
if one wants to use the stuff in a similar but dif-
ferent environment, adaptations may be needed.

We follow a paradigm that favours a grass-
roots style growth of the project. So we have
built a standard desktop PC with an Intel PIV
2.8 CPU 1024MB DDR-RAM and a Terratec
EWX 24/96 audio card - rather average real-
world hardware available for less then 700,- .

After about 8 months of intense testing and
experimentation the box is now configured as
follows:

• Suse 9.3 Linux system with default kernel
2.6.11.4-20a and alsa 1.0.9 out of the box

• jackit 0.100.0, ardour 0.99,. Muse 0.7.2,
Hydrogen 0.9.2 compiled on the machine
with Suse’s gcc and libs

• recent rezound and snd wave-editors also
compiled on the box

• a plethora of synths and smaller tools from
Suse-RPM-repositories
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We tested the setup by using it to record sev-
eral multitrack sessions, composing and manip-
ulating music with midi-driven softsynths (nei-
ther real keyboards nor external midi hardware
so far) and by editing and optimising a noisy-
tape-to CD - job for the complete ”Ring” by
Richard Wagner (plus several similar smaller
jobs for string quartet and for rehearsal tapes).
The setup works well and stable and provides
everything we need.
The issues regarding compatibility/stability are
solved so far (though it would not be wise, to
actually guarantee full stability for all needed
programs under all conditions...)

2.1.1 ... and what we are working on at
the moment

We have begun to build the previously men-
tioned framework of helping elements, consist-
ing of 4 major components:

• XFCE WM configuration scripts, which al-
low access to all needed features in a logical
and comfortable manner

• several scripts and hacks to load complex
scenarios and to provide additional help
text

• a set of templates for all major applications
that also involve the collaboration between
them

• about 300 free licensed presets, sounds and
patterns

Starting setups of several collaborating appli-
cations could be trivial - if all involved elements
were aware of each other. Today we still face
the problem of certain softsynths that can be
attached to jackd via their own command line,
and others that need to be called up via tools
such as jack connect. These are not serious ob-
stacles of course, but there is no reason not to
address smaller annoyances as well as great to-
dos. The communication between the several
processes is particularly critical and often leads
to ruin - this should be remarked amongst de-
velopers and distributors.

The website http://www.linuxuse.de/snd of-
fers downloads of sample scripts and templates
plus some help texts. More help is to be found
at http://www.audio4linux.de and we are also
working on an extensive user manual that can
serve as an introduction to Linux audio. On the
final System, in addition to the help provided by

the programmers, there will be also be 3 levels
of extra help for the users:

• kdialog popups explaining things that hap-
pen, ask the user for needed interaction and
point to more detailed help.

• HTML help files for every application that
explain the basics and how the whole sys-
tem works. It will be possible to start
scripts directly from these files, which will
be shown in KDE’s Konqueror. (Security
people may be not that enthusiastic about
the help system...)

• an online forum (PHPBB plus a simple
wiki) with daily appearance of at least one
developer/help author.

3 next steps

I would like to present a wish list to the devel-
opers and to the user community as well. Devel-
opers should improve their documentation and
users should start to read it.... . Back in 2003
we had a set of experimental stuff that could
be used but was limited by some crucial weak-
nesses, especially the lack of stability. Today
we have the tools complete and solid enough to
start to discover how to deploy them as per-
fectly as possible. To do this, there must be a
vivid community of more than just about 100
users3

We have combined Ardour, Muse, Rezound,
Hydrogen, AMS, ZynaddSubFX and about 20
tools such as Ladspa, qalsatools etc. into a
setup that is powerful and usable for us as ex-
perienced Linux users, and we have made a
feature-freeze from the 1st of January 2006 un-
til the 1st of June 2006, to use the time to make
the setup powerful and usable for everyone that
wants to deal with music and computers.

We will then offer the complete Linux Audio
Workstation, which can be used to give sound-
tech people and musicians a chance to find out
that Linux audio is ready to run for everybody.

4 Conclusions

We believe that free audio software can be an
important, powerful way to make Linux visible
to the public and thus to make the very con-
cept of collaborative, open and free production
of software a success. We not only believed that

3http://www.frappr.com/ardourusers lists 80 Ardou-
rusers today, Taybin Rutkin pointed the users at the
ardour-mailing lists to this page in November 2005...
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Linux audio is somewhat usable now and could
have a niche - we believe that within 2-3 years
it can develop into a superior solution for cre-
ative sound people in the same manner as Linux
has become a success in motion picture anima-
tion/CGI - production.
This can be done if it it becomes easier to use,
more logically integrated, more stable and more
consistent without hiding anything of its great
opportunities from the user.

At LAC I would like to present our approach
to making Linux audio usable for everyone to
developers and users as well.
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Abstract

This   paper   describes   the   high   integration   of
proprietary software for the creative desktop, and
the   effort   involved   in   creating   a   free   software
alternative which will run natively on the latest 64­
bit x86 hardware.  It  outlines the author's  reasons
for creating a 64­bit distribution based on Debian,
the packages selected, the business model of the 64
Studio   company   and   the   challenges   for   future
development.

Keywords
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Introduction

If we take a step back from pure audio software
for   a  moment,   and   look   at   the   state  of   creative
desktop   computing   tools   more   generally,   it's
obvious that there has been a lot of consolidation
among the proprietary software vendors in the last
couple of years. For example Yamaha swallowed
up   Steinberg,   Adobe   bought   Syntrillium   (the
creators   of   Cool   Edit),   Avid   bought   Digidesign
and   Apple   bought   Logic.   Adobe's   'partnership'
with Macromedia became a takeover, and now the

company   positions   its   extensive   range   of
multimedia  applications  as   the   'Adobe  Platform'.
What this means is that regardless of the hardware
or   operating   system   in   use,   the   mainstream
creative   desktop   of   the   near   future   is   likely   to
represent   a   highly   integrated   set   of   non­free
applications from a very small number of vendors.
We can expect these proprietary applications to be
well   tested   for   performance,   reliability   and
usability.

We   believe   that   it   will   be   very   difficult   for
GNU, Linux and other  free  software  to compete
for users on the multimedia desktop unless it can
achieve a similar  level  of   integration  and polish.
Without   a   significant   user   base,   it   becomes
difficult for free software to maintain the hardware
support   that   it   needs.  Reports   indicate   that   it   is
becoming   progressively   more   difficult   to   obtain
full   specifications   for   video   card   driver
development,   and   several   of   the   most   popular
high­end   audio   interfaces,   particularly   the
FireWire   models   not   running   BeBoB,   remain
without the prospect of a free software driver. We
aim   to  deliver   a   viable   and   sustainable   creative
platform based on free software, and partner with
hardware manufacturers to ensure the availability
of fully­supported components and peripherals.

1 The 64-bit question

Since any software project takes a while to get to
a   mature   stage,   when   we   launched   a   new
multimedia  distribution   last   year,  we  decided   to
concentrate on the kind of desktop systems which
we believe will be common among creative users
in the future. 
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We're   interested   in   64­bit   x86   for   two   main
reasons   ­   the   improvements   in   memory
architecture,   allowing   commodity   machines   to
have many gigabytes of RAM, and the opportunity
to drop support for legacy PC hardware. From the
point of view of a distribution, any technology that
narrows   down   the   field   of   potential   hardware
combinations is a great advantage. We don't have
to support ISA bus sound cards and we don't have
to care if the binaries won't run on a 486.

That may sound a little harsh for owners of older
hardware,   but   there   will   be   plenty   of   32­bit
GNU/Linux   distributions   around   for   some   time,
and the relentless downward spiral in the cost of
newer   technologies   looks  set   to  make  using  any
hardware older than a year or two quite counter­
productive. For example, the HP laptop which we
are  giving   this   presentation   on   is   an   entry­level
model from a department store in the UK. It has a
1.6GHz  AMD Turion  64­bit  processor  and  1GB
RAM as  standard.   It  cost   less   than  a   far   slower
generic white­box PC of a couple of years ago, and
it probably uses a great deal less energy too. 

We've had native 64­bit Linux on the Alpha and
the Itanium for years, but these architectures never
reached   the   mainstream   desktop.   SGI   has   an
Itanium2   based   GNU/Linux   desktop   product
aimed   at   the   creative   market,   but   it   costs   US
$20,000 per  machine.  Compared   to  Windows  or
any   other   operating   system,   GNU/Linux   clearly
had a head start  on x86_64, and you can choose
from   a   range   of   natively   compiled   desktop
distributions   for   the  hardware.  Unfortunately   for
the   creative   user,   all   of   these   are   aimed   at   the
general   purpose   computing   audience.   It's
impossible to be all things to all people, and what's
good for the so­called 'consumer' is rarely right for
the content creator.

2 Package selection

For   example,   typical   distributions   use   Arts   or
ESD to share the sound card between applications,
while most GNU/Linux musicians would want to
use   JACK   ­   admittedly   more   complex,   but   far
more  powerful.   I   (Daniel)  was  once  asked  what
was   so   difficult   about   JACK  that   means   it   isn't

found   as   the   primary   sound   server   in   any
mainstream GNU/Linux distribution. I don't think
it is difficult to use, but for the time being it still
requires a patched kernel, and some knowledge of
sample rates and buffers. Many non­musical users
just want to be able to throw audio at any sample
rate to the sound card, and could care less about
real­time priority.

In addition,  the creative user's default selection
of   applications  would  be  very  different   to   ­   for
example ­ a sys­admin. Even gigantic distributions
like Debian don't package all of the specialist tools
needed   for   media   creation,   and   the   integration
between packages is often less than perfect. So the
goal   of   64   Studio   is   to   create   a   native   x86_64
distribution with a carefully selected set of creative
tools   and   as   much   integration   between   them   as
possible.

Today,   we   have   free   software   applications
covering   many   of   the   creative   disciplines   other
than   audio   or   music,   including   2D   and   3D
graphics,   video,   and   publishing   for   the   web   or
print.   Unfortunately   media   creation,   when
compared   with   media   'consumption',   remains   a
niche activity, even on Linux. This niche status is
reflected  in the fact  that none of the mainstream
Linux distributions work particularly well   'out  of
the   box'   for   media   creation   ­   but   to   be   fair,
Windows   XP   or   OS   X   also   require   many
additional   packages   to   be   installed   before   their
users can realise the full creative potential of their
chosen platform.

Of   course   specialist   Linux   audio   distributions
already   exist,   including   AGNULA/DeMuDi,
Planet   CCRMA,   dyne:bolic   and   Studio   to   Go!,
with a good level of integration for music­making.
But all of these other audio distributions are x86
only   so   far,   and   there   are   few   specialist
distributions   in   the   other   creative   fields.
Ratatouille, a Knoppix­based distribution designed
for animators, is one exception.

Switching   to   native   64­bit   software   doesn't
necessarily   realise   an   instant   and   obvious
improvement   in   performance   on   the   same
hardware, but we think that if we create a native
platform, then application developers can begin to
realise   the   benefits   of   64­bit   processor
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optimisation   and   an   improved   memory
architecture. Even in the short term, it makes more
sense than building i386 binaries.

But   there's   a   problem   with   specialist
distributions. Since they have relatively few users,
they usually end up being maintained by a single
person. External project funding, whether from the
state or a venture capitalist, is often unreliable in
the   long   term,   and   can   steer   the   agenda   of   the
distribution away from that of the users. 

Since   we   believe   maintaining   a   niche
distribution   is   simply   too   much   work   for   a
volunteer   to   be   expected   to   do,   we   set   up   a
company to pay developers to create and maintain
the system using the Custom Debian Distribution
framework.   You   may   know   of   Free's   work   on
CDD   from   recent   releases   of   the
AGNULA/DeMuDi   distribution.   Most   of   the
packages in 64 Studio come from the Pure 64 port
of Debian testing, with some from Ubuntu, some
from DeMuDi and some custom built. 

3 Why Debian?

A more obvious choice might be Red Hat, given
that   many   of   the   high   end   (which   is   to   say
expensive)   proprietary   tools   used   in   Hollywood
studios and elsewhere are sold as binary­only Red
Hat packages. However, the split between Red Hat
Enterprise   and   Fedora   Core   presents   serious
problems for any derived distribution. On the one
hand, you could rebuild Red Hat Enterprise from
source   as   long   as   you   removed   all   Red   Hat
trademarks,   but   that's   a   lot   of   extra  work   ­   and
you'd have   to   follow Red Hat's  agenda  for   their
distribution, which you couldn't have any input to.
We doubt that you'd get much goodwill from Red
Hat for 'improving' their distribution either.

On the other hand, you could build a distribution
on   top   of   Fedora   Core.   It's   broadly   Red   Hat
compatible,   and   there   are   the   beginnings   of   a
community process taking place ­ although it's still
far more centrally controlled  than genuine grass­
roots   distributions.   The   key   problem   with   this
approach   is   that  Fedora  Core  is  not  designed  or
built   to   actually  be   used.  We  can   say   this  with

some confidence  because   I   (Daniel)  was  able   to
ask Michael Tiemann,  former Red Hat  CTO and
now vice president  of  open source,   this  question
myself. Fedora Core remains a technology preview
for Red Hat Enterprise, and the Fedora Project has
absolutely no commitment to stability or usability.
If Red Hat wants to try a major update to see what
breaks, it can.

Debian does have a commitment to stability, and
a  bona­fide  community  process.  There  are  other
reasons   for   favouring  Debian  over  Red Hat,  not
least  of  which   is   the   long­established  support   in
Debian for seamless upgrades with apt­get,  since
on   the   creative   desktop   we'll   be   upgrading
continuously. The work of the Debian Pure 64 port
team is of a very high quality, not to mention that
of all the many Debian package maintainers.

We   recognise   that   whatever   packages   we   put
into   64   Studio,   users   will   want   some   of   the
packages that we haven't included ­ so being able
to use thousands of binaries straight from the Pure
64 port without modification is a major advantage.
Because we're sticking very closely to Debian with
the   64   Studio   design,   users   can   install   any
application   from Pure  64  simply  by  enabling  an
additional   apt   source.  This   includes  most   of   the
well­known   applications   with   the   exception   of
OpenOffice.org, which just won't build natively on
x86_64 yet. 

In fact, 64 Studio is not so much a distribution
based on Debian as a Debian remix. Free is in the
process of  becoming a Debian Developer,  so we
will be able to contribute our improvements back
directly   ­   where   they   are   Debian   Free  Software
Guidelines   compliant.   However,   we   do   benefit
from the flexibility of not being an official part of
Debian.   For   example,   the   Debian   project   has
decided   that   it  does  not  want   to  package  binary
audio interface firmware, which is required to be
loaded   by   the   driver   for   the   interface   to   work.
That's fair enough, and we understand the reasons
for their decision, but it's a major problem if you
own that kind of interface, because it won't work
out of the box.

This   kind   of   hardware   ­   effectively
reprogrammable on  the fly  with  a new firmware
blob ­ is only going to become more common, and
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not just for audio interfaces. So for the sake of our
users,   we   have   to   support   it.   Otherwise,   free
software  will  become  significantly  harder   to  use
than   proprietary   equivalents   ­   and   that's   not   a
future we want to see. As end users,  we couldn't
modify   our   sound   cards   when   they   were   pure
hardware, so we don't think it's any worse that they
now require a binary upload. At least now there is
the possibility of creating our own firmware and
uploading   that   instead,   which   we   didn't   have
before.

Our  first  alpha release  was  based  on Fluxbox,
because   this   window   manager   places   minimal
demands on system resources, and is very quick to
learn,   since   there   isn't  much   to   it.  However,  we
have   since   switched   to   a   stripped­down   Gnome
install.   Again,   this   is   because   we   don't  want   to
make free software too difficult for people who are
used  to proprietary  tools.  This doesn't  mean that
we will dumb down the interface or clone the look
of   other   platforms,   but   ­   for   example   ­   we   can
expect   new   users   to   assume   that   the   program
launching menu is in the lower left corner of the
screen. There are also expectations about drag and
drop   file   management,   or   GUI­based   system
configuration tools. Fluxbox is very fast, but it's an
extra thing to get used to on top of everything else.

4 The business model

Since we want to pay developers to work on 64
Studio, part of making the distribution sustainable
is creating a viable business model based on free
software.   The   maintainers   of   the   64   Studio
distribution are fundamentally in an editorial role,
selecting  the most  appropriate  software  from the
many thousands of packages available, and putting
it into a convenient snapshot. Since the software is
free software, it would be churlish of us to demand
that  people pay us  to do  this,  but   if  we provide
something   of   value   then   it   should   be   worth   a
modest (and completely optional) subscription. We
believe Red Hat's compulsory subscription model
has cost its Enterprise distribution a lot of potential
users.  Apart   from being ethically  questionable in
the   context   of   software   contributed   to   the
distribution at zero cost, as a systems manager at a
well­known   studio   with   hundreds   of   Red   Hat

desktops put it, "Why should we have to pay for
support every year whether we need it or not?" 

Community support often meets or exceeds the
quality that proprietary software vendors provide,
but people tell us that it's reassuring to have some
paid­for support available as an option. Sometimes
our   questions   are   just   too   ordinary   to   interest
people on a mailing list or forum, or at the other
end   of   the   scale   they   can   require   patience   and
time­consuming   research   to   answer.   It   can
sometimes  be  difficult   to  get   the  help  you need
when   you're   up   against   a   project   deadline.   We
believe that by covering one kind of desktop user
really well, we can provide detailed support for the
people  that  need  it  at  a   reasonable  cost.  For  the
people   that   don't   need   support,   or   are   planning
large deployments  where per­seat  licences would
be prohibitive,   it's  still  free  software  ­ and we're
not going to lock people into support contracts in
order for them to access updates either.

We   also   offer   the   64   Studio   codebase   as   a
development   platform   for   OEMs   building
multimedia   products   on   x86_64   hardware.   We
believe   this   enables   these   companies   to   reduce
their   development   costs   and   time­to­market.  We
are considering producing a server edition of the
distribution   in   future   that  would   combine   a   fast
and simple install with pre­configured services, so
that a workgroup file server or a streaming media
server could be set up in a few minutes ­ and these
services  would  work   right   away  with  64  Studio
desktop machines of course. In the longer term, we
hope that 64 Studio will go beyond packaging and
integration   work   to   contribute   directly   to
application   development,   particularly   where
'missing links' are identified.

5 Challenges

There are a number of challenges we still have
to   face.  The   first   is   following   the   rapid  pace  of
kernel   development.   In   version   0.6.0   we   were
using Linux  2.6.13  with   Ingo Molnar's   real­time
pre­emption code and a few other patches. At one
time these patches didn't  build on x86_64 at  all,
and as far as we knew, we were the only native 64­
bit   distribution   using   them   at   the   time.   The

LAC2006
88



indications   from our  beta   testing  community  are
that this combination works really well for audio
with full pre­emption enabled, the most aggressive
setting.   For   the   time   being   we   are   using   the
realtime­lsm framework to give real­time priorities
to non­root users, because we know it works. We
may switch to rlimits in the future, as this code has
been   merged   into   the   mainline   kernel   for   some
time now. 

Another  challenge we have to deal  with is the
Debian   community   process.   We   are   not   in   a
position   to   demand   anything   from   the   Debian
developers, we can only suggest and encourage. If
there's a real roadblock within Debian, we have the
option to create a custom package, but obviously
that's something we'd rather not do.

A   third   challenge   is   the   issue   of   support   for
proprietary   formats  within   free   software.   At   the
level of encoding and decoding, we think the best
solution   we've   seen   is   the   GStreamer   plugin
collection,  which as far as we can tell  meets the
requirements  of   free   software   licences   regarding
linking,   and   also   the   legal   requirements   of   the
patent holders. It's simply not sustainable to expect
users to locate and download libraries of dubious
legal status, and install these by themselves. Apart
from   any   ethical   problems,   it's   impossible   to
support users properly in that situation. In addition,
using   these   libraries   is   likely   to   be   out   of   the
question for an institutional user, such as a college.

At the level of project interchange, for example
moving   a   complex   project   from   Ardour   to
ProTools,   there  does  seem to be a  move among
proprietary audio applications towards support for
AAF,   the   Advanced   Authoring   Format.   Free
software   must   support   this   kind   of   high­level
project  compatibility   format,  otherwise   it  doesn't
stand a chance of gaining a significant user base in
this   area.  When  we  talk   to  people   in   the  music
industry, it's almost a mantra that 'everyone mixes
in ProTools'. We're not aware of any free software
audio   application   that   supports   ProTools   format
import or export directly, but at least with AAF we
have the chance of finding a middle way. 

6 Conclusion

64 Studio is  available  for  download as an  .iso
image,   and   the   distribution   is   seamlessly
upgradeable with apt­get of course. We'd be more
than   pleased   to   hear   your   test   reports   and
suggestions for the distribution ­ you can help us
make free software the creative desktop of choice.
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9 Appendix

Some   of   the   packages   included   in   64   Studio
release 0.6.0:

CD
sound­juicer
cdrdao
dvd+rw­tools
gcdmaster

Graphics
gimp
inkscape
blender
gphoto2
gtkam
gtkam­gimp
gthumb
yafray
dia
libwmf­bin
ktoon
pstoedit
sketch
imagemagick
perlmagick
xsane

Internet
gftp
bluefish
linphone
gaim
gnomemeeting

JACK
jackeq
jack­rack
jamin
meterbridge
qjackctl

Audio
alsa­base
alsa­firmware
alsa­source
alsa­tools
alsa­tools­gui
alsa­utils
flac
speex
swh­plugins
tagtool
tap­plugins

vorbis­tools
totem­gstreamer

Base
bittornado­gui
bittorrent
gnome­system­tools
ia32­libs
nautilus­cd­burner
vorbis­tools
vorbisgain

Office
abiword­gnome
abiword­help
abiword­plugins
abiword­plugins­gnome
gnumeric
gnumeric­doc
gnumeric­plugins­extra

Publishing
scribus
evince

Notation
noteedit

Recording
ardour­gtk
ardour­session­exchange
audacity
timemachine

Sequencing
hydrogen
rosegarden4
muse
seq24

Synthesis
ams
amsynth
linuxsampler
qsampler
qsynth
vkeybd

Video
kino
libtheora0
dirac

Kernel
kernel­image­2.6.13­1­multimedia­amd64­generic
realtime­lsm
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Abstract
foo is a versatile non-realtime sound synthesis and
composition system based on the Scheme program-
ming language (Eckel and González-Arroyo, 1994;
Rumori et al., 2004; Rumori, 2005). It is mainly
used for sound synthesis and algorithmic compo-
sition in an interactive type-render-listen-loop (the
musician’s read–eval–print-loop) or in conjunction
with an editor like the inferior mode of emacs. Un-
like with other sound synthesis languages, foo pro-
grams are directly executable like a shell script by
use of an interpreter directive. foo therefore allows
for writing powerful sound processing utilities, so
called footils.1

Keywords
foo, scheme, scripting, algorithmic composition,
sound utilities

1 Introduction

Scripting has played a major role in the develop-
ment of computer systems since the early days.
Scripting often means being a user and a pro-
grammer at the same time by accessing func-
tions of applications or operating systems in an
automated, “coded” way rather than interac-
tively.

A major design principle of the UNIX oper-
ating system is to create several simple appli-
cations or tools which are suitable for exactly
one purpose and to combine them in a flexible
way to implement more complex functionalities.
This is possible through the well-known UNIX
concepts of pipes and file redirections. A pow-
erful command line interpreter, the shell, allows
for accessing these concepts both in interactive
mode as well as in so called shell scripts. It
is quite easy to generalize an interactive shell
command for using it in a script and vice versa.
In fact, the UNIX shell programming language
has started to blur the distinction between user
and programmer.

1Use of the term footils by courtesy of Frank
Barknecht, see http://www.footils.org

UNIX shell scripts are often used for recur-
ring custom tasks closely related to the operat-
ing system itself, such as system administration,
maintenance and file management. Apart from
that, there are many scripting languages for
special purposes, such as text processing (awk,
Perl). Scripts written in one of these languages
can be seamlessly integrated with UNIX shell
scripting by means of the so called interpreter
directive at the beginning of a script (as docu-
mented in execve(2)):

#!/usr/bin/perl

Those scripts appear and behave like any
other UNIX program or shell script and thus
get scriptable itself. This property of being “re-
cursive” makes shell scripting so powerful.

2 Scripting and computer music

2.1 Standalone applications

In the field of computer music, composers of-
ten deal with graphical standalone applications,
such as Ardour or Pd, or with dynamic lan-
guages in an interactive fashion, such as Super-
Collider. While these tools are very powerful
in terms of harddisk recording, sound synthesis
or composition (like Perl for text processing),
they do not integrate in the same way with the
operating system’s command line interface as
textual scripts (unlike Perl for text processing).
In most cases, however, this is not necessary or
desirable.

Pd can be launched without showing its GUI.
the patch to be executed can be given at the
command line, including initial messages to be
sent to the patch. SuperCollider’s language
client, sclang, may be fed with code through its
standard input which then is interpreted. This
level of shell automation is already sufficient for
tasks such as starting a live session or an inter-
active sound installation.
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2.2 Soundfile utilities

A major task when using a computer for any
task is file maintenance. This is especially
true for dealing with soundfiles. Common tasks
include conversion between different soundfile
types, changing the sample rate or the sam-
ple format, separating and merging multichan-
nel files, concatenating soundfiles, removing DC
offset or normalizing. As for sorting or archiving
text files, this kind of tasks are often applied to
many soundfiles at a time and therefore should
be scriptable.

In order to accomplish those tasks, a lot of
command line utilities are available which fully
integrate which shell scripting in the above-
mentioned sense. Examples for such utili-
ties are sndinfo and denoi included in Csound
(Boulanger, 2005), the tools bundled with lib-
sndfile sndfile-info, sndfile-play and sndfile-
convert, or sndfile-resample from libsamplerate
(de Castro Lopo, 2006). Another example is the
well known sox program, which also allows for
some effects processing (Bagwell, 2005).

Those tools can be called from a shell script in
order to apply them comfortably to a large num-
ber of files. The following bash script might be
used to remove mains power hum from a num-
ber of soundfiles specified on the command line:

#!/bin/bash

SOX=sox
FREQUENCY=50 # european origin
BANDWIDTH=6
SUFFIX="_br"

while getopts ":f:b:s:" OPTION; do
case $OPTION in
f ) FREQUENCY=$OPTARG ;;
b ) BANDWIDTH=$OPTARG ;;
s ) SUFFIX=$OPTARG ;;

esac;
done

shift $(($OPTIND - 1))

for INFILE; do
OUTFILE=‘echo $INFILE | sed -r -e \

"s/^(.*)(\.[^\.]*)$/\1${SUFFIX}\2/g"‘
$SOX $INFILE $OUTFILE \
bandreject $FREQUENCY $BANDWIDTH;

done

While using command line soundfile tools this
way might be quite elegant, they still can only
run as they are. It is not possible to directly
access and manipulate the audio data itself from
inside such a script.

2.3 Scriptable audio applications
Apart from that, there are operations on sound-
files which are much closer related to the artis-
tic work with sound itself, such as filtering or
effects processing of any kind, mixing, arrang-
ing or simply “composing” based on algorithms
and/or underlying sound material. While re-
questing scripting capabilities is evident for do-
ing file related tasks mentioned above, the latter
procedures are mostly done inside single stan-
dalone applications or sound synthesis systems.

Attempts have been made to open the pro-
cessing scheme of the audio data to a script in-
terface. One approach was realized in the Com-
puter Audio Research Laboratory (CARL) Soft-
ware Distribution at CRCA (CME) since 1980
(Moore and Apel, 2005). The CARL system
consists of several independent small UNIX pro-
grams for reading and writing soundfiles, as well
as sound synthesis, effects processing and ana-
lyzing audio data. They communicate with each
other via ordinary UNIX pipes. This way it is
possible to generate a kind of signal processing
patches as in Pd, but by means of an arbitrary
shell scripting language:

$ fromsf infile.ircam | \
filter bandreject.fir | \
tosf -if -os outfile.ircam

This approach is quite smart, as it allows for
using the UNIX command line for audio pro-
cessing in the same way as for text processing.
It is even possible to set up parallel processing
pipes with the para program. since the shell
language is not powerful enough for expressing
those parallel pipes, this program has to use its
own syntax, which unfortunetaly causes some
deformation to the aesthetical integrity of the
CARL approach.

Another approach was implemented by Kai
Vehmanen in his ecasound application (Vehma-
nen, 2005). ecasound allows for creating flexi-
ble so called signal processing chains. The pa-
rameters for these chains are specified via com-
mand line options or from files containing the
chain rules. Therefore ecasound is fully script-
able from the commandline or from inside shell
scripts.

$ ecasound -i:infile.aiff -o:outfile.aiff \
-efr:50,6

Ecasound allows for building up parallel pro-
cessing chains at the same grammatical level of
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the scripting language used for simpler tasks.
ecasound does not only operate on soundfiles,
but may also record, process and play audio in
realtime, optionally using controller data such
as MIDI.

Both the CARL tools and ecasound are exam-
ples for tools which allow for directly accessing
the audio processing scheme. by calling them
from inside a shell script, similar to the sox ex-
ample above, one is able to create very sophis-
ticated sound processing utilities.

3 Using foo for writing audio
processing scripts

foo’s approach for allowing scripting is different
from the abovementioned ones. foo is neither
a closed standalone application nor a utility es-
pecially designed for scripting. foo is a sound
synthesis and composition environment for non-
realtime use based on the dynamic, general pur-
pose programming language Scheme.

3.1 History of foo

foo was developed by Gerhard Eckel and Ramón
González-Arroyo in 1993 at ZKM, Karlsruhe,
for the NeXTStep platform. The low-level
foo kernel is written in Objective-C, while the
higher level parts are written in Scheme.

Starting from 2002, foo was ported to
the Linux platform by the author using the
GNUStep framework (Fedor et al., 2005), a free
OpenStep implementation. The project was reg-
istered at SourceForge in 2003. In 2004, foo was
ported to Mac OS X, where it runs natively us-
ing the Cocoa (formerly OpenStep) framework.

Also in 2004, foo was partitioned into libfoo,
which contains the signal processing primitives,
and elkfoo, which consists of the interface to the
Elk Scheme interpreter (Laumann and Hocevar,
2005). This should make a possible future tran-
sition to a different Scheme implementation eas-
ier. For easier packaging and cross-plattform-
building, foo got an autotools build system in
the same year.

3.2 Major concepts of foo

Them main purpose of foo is to provide a high
quality, highly flexible sound synthesis and mu-
sic composition system.

foo provides signal processing primitives writ-
ten in Objective-C which can be accessed from
inside the Scheme environment. Unlike CLM
(Schottstaedt, 2005) or Csound, foo does not
distinguish between instruments and events

(score). Nevertheless, it is easily possible to ex-
press a Csound-like semantics of orchestra and
score with foo, or the concept of behavioral ab-
stractions as in Nyquist.

By means of the foo primitives, static signal
processing patches can be generated and exe-
cuted. Temporal relationships are expressed in
hierarchical time frames which are relative to
the surrounding one.

Higher level concepts, such as envelopes or
musical processes, are entirely implemented
in Scheme in the control library by Ramón
González-Arroyo, which is part of foo.

This openness allows for using foo for very
different tasks: apart from algorithmic compo-
sition based on highly abstracted Scheme con-
structs as found in the control library, it is also
possible to use foo on the kernel level for sim-
ple tasks like converting soundfiles, extracting
or merging channels, or effects processing.

Like CLM, foo is usually used interactively
by entering and evaluating Scheme expressions,
which construct signal processing patches or
render them into soundfiles. It is also common
to use foo in conjunction with an editor, such as
the inferior -mode of emacs. Since Scheme is an
interpreted language (at least in the implemen-
tation used so far), foo programs can also made
directly executable from the shell command line
prompt.

This allows for writing versatile “shell”
scripts which are not bound to the capabilities
of a specific application like sox, but rather can
benefit from the full power of a generic program-
ming and sound synthesis language. Writing foo
scripts (“footils”) also differs from approaches
such as ecasound in that there is no distinction
anymore between the calling language (shell)
and the audio processing language (ecasound
chain rules).

3.3 Making foo scripting comfortable
Several issues had to be solved in order to make
foo programs directly executable as scripts
while not affecting the interactive use of foo. In
the following, some of these issues are described.

3.3.1 Understanding the interpreter
directive

According to the manpage of execve(2), a
script can be made executable by adding an in-
terpreter directive:

execve() executes the program
pointed to by filename. filename
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must be either a binary executable,
or a script starting with a line of the
form #! interpreter [arg]. In the
latter case, the interpreter must be
a valid pathname for an executable
which is not itself a script, which
will be invoked as interpreter [arg]
filename.

Since the original elk executable did not ac-
cept a scheme file as a direct argument, a differ-
ent startup executable for foo has been written.
This was already done in the first version of foo.
A foo script can be build by adding a line like

#!/usr/local/bin/foo

at its first line.
3.3.2 Load stages, packages and script

arguments
The startup procedure of the foo sound synthe-
sis program follows a multi-stage approach:

• start the interpreter executable and evalu-
ate command line options directed to the
interpreter itself (heap size, etc.)

• hand over control to the scheme interpreter
by loading the toplevel scheme file, load
foo primitives into the interpreter, evaluate
scheme stage command line options, load
foo packages

• if a script file was specified on the command
line, build the command line left over for
the script and execute it, else enter the in-
teractive read-eval-print-loop

This load procedure indicates a problem
which arises when specifying options to the foo
executable:

$ foo --unload control
Usage: foo [options] [arguments]
...

$ foo -- --unload control

The first invocation of foo fails, because
the option --unload is not understood by the
scheme interpreter’s command line parser. In
order to make sure it “reaches” the scheme ini-
tialization stage, it has to be “quoted” with --
to bypass the elk interpreter.

Invoking foo with the option --unload
control will prevent the control library from
being loaded into foo at startup. This might

be suitable for scripts which do not need this
package in order to speed up the initialization
process. Therefore the interpreter directive for
such a script should read:

#!/usr/local/bin/foo -- --unload control

Another problem occurs at this point:
execve(2) apparently does not tokenize multi-
ple initial arguments given in an interpreter di-
rective into several arguments but passes them
as a whole as one argument to the interpreter.

In order to be able to parse multiple options
given in the interpreter directive, the foo exe-
cutable contains a hack which tries to tokenize
argv[1] into several arguments according to a
certain heuristic, constructs a corrected argu-
ment vector and re-executes itself.

3.3.3 Command line parsing
foo scripts have to be able to access the part of
the invoking command line following the script-
file argument in order to understand script op-
tions. Command line parsing therefore is a com-
mon task in foo scripts.

In order to make command line parsing eas-
ier for script authors, a scheme library cmdline
is included with foo. It features alternative op-
tions such as long- and shortopts, options with
or without parameters, different possibilities of
specifying multiple parameters to options, and
automatic help message generation:

#!/usr/local/bin/foo -- --unload control

(require ’cmdline)

(let*
;; equiv-opts-list | mandatory? | \

with-params? | help-string
((option-list
’((("--help" "-h") #f #f "this help screen")
(("--outfile" "-o") #t #t "output file")
(("--type" "-t") #f #t "file type")
(("--sformat" "-s") #f #t "sample format")
(("--srate" "-r") #f #t "sample rate")
(("--channels" "-c") #f #t "channels")))

;; show help message
(help
(lambda ()
(format #t "~a: script foo~%"
(car (foo:script-args)))

(format #t "usage:~%")
(format #t "~a~%"
(cmdline:help-message option-list))

(exit))))

;; help requested?
(if (cmdline:option-given?

(foo:script-args) option-list "--help")
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(help))

;; commandline valid?
(if (not (cmdline:cmdline-valid?

(foo:script-args) option-list #t))
(help)))

This script will produce the following output
when invoked with no arguments:

$ ./script.foo
(cmdline:validate) \
mandatory option missing: --outfile

./script.foo: script foo
usage:

--help, -h this help screen
--outfile, -o <args> output file
--type, -t <args> file type
--sformat, -s <args> sample format
--srate, -r <args> sample rate
--channels, -c <args> channels

multiple <args>: --opt <arg1> --opt <arg2> \
or --opt <arg1,arg2,...>

Other functions of the commandline scheme
library not shown in this example include read-
ing the parameter lists of specific options or get-
ting the remaining arguments of the command
line, e. g. file arguments.

3.3.4 Interacting with the outer world:
stdin and stdout

Reading from standard input and writing to
standard output from foo scripts is important
if executed inside a pipe. Imagine calling a foo
script like this:

$ find . -name ’*.wav’ | script.foo

This will mean reading a file list from stan-
dard input, which can be accomplished with
standard scheme functions. The following code
reads the files from standard input into the list
files and the number of files into num-files:

(let*
((files
(do ((file-list ’()

(cons last-read file-list))
(last-read))
((begin

(set! last-read (read-string))
(eof-object? last-read))

(reverse file-list))))
(num-files (length files)))

...)

Writing to standard output is done similarly
through standard scheme functions.

3.4 footils

footils is a collection of foo scripts written so far
by Gerhard Eckel and the author. The aim of
footils is to provide a set of powerful and robust
scripts for the musician’s everyday use. footils
currently consists of the following scripts:

fsconvert convert soundfiles

fssrconv do a samplerate conversion on sound-
files

fsextract extract channels from multichannel
files

fsfold fold a soundfile over itself and normalize

fskilldc remove DC from soundfiles

fsmono2stereo create stereo file from mono
file

fsquadro2stereo create stereo file from
quadro file

fsnorm normalize soundfiles

fsregion extract a temporal region from sound-
files

fsreverse reverse soundfiles in time

fstranspose transpose soundfiles

fscat concatenate soundfiles

These scripts are currently refactored and in-
tegrated with the foo distribution.

4 Conclusions

Several issues of scripting in the field of com-
puter music have been considered. It turned out
that with most current software it is not possible
to write scripts which are seamlessly accessible
from the UNIX command line and at the same
may benefit from the power of a fully featured
programming and sound synthesis language.

It has been shown that writing scripts with
foo might be able to close this existing gap.
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Abstract

Modern music production systems provide a
plethora of sound resources, e.g. hundreds or thou-
sands of sound patches on a synthesizer. The more
the number of available sounds grows, the more dif-
ficult it becomes for the user to find the desired
sound resource for a particular purpose, thus de-
manding for advanced retrieval techniques based on
sound classification. This paper gives a short survey
of existing approaches on classification and retrieval
of sound resources, discusses them and presents an
advanced approach based on ontological knowledge
processing.

Keywords
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1 Introduction

State-of-the-art music production systems con-
sist of a computer-centered, heterogeneous net-
work of hardware and software modules with
typically huge banks of sound resources. Mod-
ern hardware synthesizers or tone modules of-
ten have banks with hundreds or thousands
of different sounds. Producing electronic mu-
sic therefore means to select among synthesizer
or tone modules, as well as to select sounds
from each module. Modules not only (if at
all) provide factory presettings, but typically
also reserve much memory space for lots of
user patches that may be tweaked manually or
loaded via MIDI, thereby even increasing the
number of available sounds. The music pro-
ducer’s task of selecting a sound thus becomes
an increasingly complex challenge.

For example, imagine a composer who has al-
ready in mind a vague idea of the electronic
sounds that should be used for a new piece
of music. In an older piece a couple of years
back in time, there was a bass line with a
bass sound that also should fit well for the new
piece. But what synthesizer was used to pro-
duce this sound? Even if the synthesizer is

known, which one of the hundreds or thousands
of sound patches was used? If it was a user
patch, where was the patch stored? Even if
the sound can be located, over which specific
MIDI port and channel can the sound be ad-
dressed? Unfortunately, on many synthesizers,
sound patches are ordered in a fairly chaotic
fashion, especially, if they do not fit into the GM
sound map. In the worst case, the composer has
to scan through thousands of sound patches to
find the desired one. What is required, is the
possibility to search for a particular sound.

Searching for a file in a file system is concep-
tually fairly straight forward, given the name
of the file (or part of it), or the file type, or
some content that is known to appear in the
file. In contrast, searching for a sound is much
more challenging. First of all, while all files
in a file system can be iteratively accessed by
browsing through the directory hierarchy, there
is, as of this writing, no central registry for all
sound resources that are available on the sys-
tem. Rather, every synthesizer has its own ap-
proach of managing sound patches. Secondly,
while files can be searched for by their name or
type or content, defining useful search criteria
for sounds is difficult. Finally, searching for near
matches means to have a system that allows for
defining proper metrics of sound comparison.

In the above example of looking for a bass
sound, listing all available bass sounds would
already fairly reduce the number of sound re-
sources that have to be further checked. If the
bass sound can be qualified even more specific,
the search could be even more effective. In this
article, we examine and discuss multiple ap-
proaches for classifying and describing sounds.
We present a prototype design and implemen-
tation of a sound classification and description
framework based upon ontological technology.
We show how this framework enables us to
search for specific sounds. Finally, we discuss
the impact of further pursuing this approach on
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Linux audio development.

1.1 Preliminaries

There is a mismatch between the classical,
rather mathematical notion of the term sound
and the common conception of sound as viewed
by most musicians and music listeners. While
the classical definition solely focuses on the core
wave shape of a periodic signal, most people
perceive aperiodic characteristics also as part
of a sound. Among such aperiodic characteris-
tics are vibrato, noise content, reverb or echo
content, but also irregularities of the harmonic
spectrum such as non-equidistant partials or
partials that vary in pitch or amplitude. For
the remainder of this article, we therefore ex-
tend the classical definition by also incorporat-
ing such aperiodic properties into the notion of
sound.

1.2 Paper Outline

We start with a short survey of how various sys-
tems currently address, if at all, the sound selec-
tion problem (Section 2). Then we discuss the
approaches in order to reveal commonly used
strategies (Section 3). Based upon this discus-
sion, we develop an ontological framework in
order to solve the sound selection problem in a
unified way (Section 4). We demonstrate the
usefulness of our system by giving some exam-
ples of how the user can benefit from the sys-
tem (Section 5). The work presented here has a
significant impact on Linux audio development
in general and on construction of software syn-
thesizers in particular, which is left for further
investigation (Section 6). We complete our jour-
ney with a concluding summary of our results
(Section 7).

2 Related Work

We give a short survey on the history of sound
classification, from acoustic instrument tax-
onomies and organ disposition over grouped cat-
egories in the MIDI standard to what recent
synthesizers provide. This survey is not at all
meant to be complete, but establishes some cen-
tral ideas for sound classification that we will
discuss and further develop in the subsequent
sections.

2.1 Instrument Taxonomies

Classification of acoustic instruments has a long
tradition. Figure 1 shows an example taxon-
omy of selected acoustic instruments as it can

be found in this or similar form in standard mu-
sic literature. Note that such taxonomies are
typically based on how an instrument techni-
cally works rather than how it sounds. Still,
if two instruments work similarly, they often
sound similarly. Eventually, however, a small
change in construction may result in a tremen-
dous change in sound.

Figure 1: A Taxonomy of Selected Acoustic In-
struments

Also note, that, traditionally, the realization
of the sound source of the instrument is more
important for classification than e.g. that of the
body. For example, a saxophone has a reed
mouthpiece and therefore is considered to be a
reed instrument regardless of its metallic body,
while the so-called Indonesian trumpet is blown
like a trumpet and therefore considered as brass
instrument, regardless of its wooden body.

2.1.1 Dispositional Approach

The situation is slightly different for the (acous-
tic or electric) organ, which has the ambition
of uniting many instruments (organ registers)
into a single apparatus. While, at least for
the acoustic organ, there is also a technical
classification of pipes based on how they work
(e.g. labial or stopped pipes), organ registers
are often named after well-known acoustic in-
struments (e.g. flute, trumpet, saxophone), i.e.
how they sound. Indeed, the organ’s naming
of registers is maybe the oldest example for a
categorization of sounds: it assists the organ
player in looking up a sound. This is especially
important since each organ has an individual,
more or less rich set of sounds, and that way,
a guest organ player can quickly get familiar
with a foreign organ. Remarkably, already Sup-
per(Supper, 1950) notes that the rules, which
underly the disposition of an organ, are of hier-
archical kind. We will resume this idea, when
presenting a framework for describing and look-
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ing up sounds (cp. Section 4).

2.2 Grouping

The instrument patch map of the General MIDI
(GM) Level 1 Standard(MIDI Manufacturers
Association, 2005) defines 128 instruments that
are partitioned into sixteen categories (cp. Fig.
2).

Program Family

1-8 Piano
9-16 Chromatic Percussion
17-24 Organ
25-32 Guitar
33-40 Bass
41-48 Strings
49-56 Ensemble
57-64 Brass
65-72 Reed
73-80 Pipe
81-88 Synth Lead
89-96 Synth Pad
97-104 Synth Effects
105-112 Ethnic
113-120 Percussive
121-128 Sound Effects

Figure 2: GM Level 1 Sound Categories

Originally, the motivation for specifying an
instrument patch map was driven by the ob-
servation that a MIDI file which was produced
on some MIDI device sounded totally different
when reproduced on a different MIDI device
because of incompatible mappings from MIDI
program numbers to sounds. Therefore, in the
early days, MIDI files could not be easily ex-
changed without patching program change com-
mands. Hence, the main purpose of the GM in-
strument patch map was to specify a fixed map-
ping from MIDI program numbers to sounds.
Given the existing MIDI devices of the time
when the GM standard was created, a set of 128
prototype sounds, so-called instruments, was
specified and assigned to the 128 MIDI program
numbers. A GM compatible device has accord-
ingly to provide sounds that match these pro-
totype sounds. Still, the GM standard explic-
itly leaves the specification of prototype sounds
fuzzy and thus encourages device implementors
to take advantage of space for variations of an
actual MIDI device. Hence, when playing a
MIDI file among different GM compatible de-
vices, there will be typically an audible differ-
ence in quality or style, but the overall impres-

sion of the performance is expected to remain.

The GM instrument patch map specifies pro-
totype sounds that were popular on mainstream
MIDI devices at that time. Remarkably, most
sounds in the map represent acoustic or electro-
acoustic instruments as used in classical or pop-
ular music. They are grouped roughly following
the classical taxonomies of instruments (cf. Sec-
tion 2.1).

Only the four categories Synth Lead, Synth
Pad, Synth Effects and Sound Effects contain
a collection of sounds that allude to specific
sounds that had evolved in electronic music and
were widely used since then. The former two al-
lude to a qualitative categorization (lead, pad),
while the latter two (effects) allude to the in-
tended purpose of use.

Due to the extraordinary relevance of drum
sounds in temporary music, the GM standard
also defines a drum map that assigns basically
fixed-pitch drum sounds to MIDI pitch num-
bers. Having a fixed pitch (unless pitch-bended
or otherwise tuned), drums constitute a sepa-
rate category of their own. Within this cat-
egory of drums, however, there is no further
categorization perceivable, except, maybe, that
those drums that represent a standard drum-
mer’s hardware are grouped together in the
lower part of the map, while Latin percussion
and ethnic drums are mostly assigned to up-
per pitches. In this sense, the drum map itself
maybe considered to be ordered according to
the style (i.e. intended use or purpose) of the
drums.

2.3 Banking

More recent MIDI devices break the limit of 128
program numbers by introducing sound banks:
with the bank select MSB/LSB controller chan-
nel messages, a MIDI channel can be directed
to switch to a different bank of sounds. In
order to remain GM compatible, each bank
should itself conform to the GM instrument
patch map, but may provide a different style
of sounds (e.g. “bright”, “resonant”, “slow”,
“fast decay”). Unfortunately, some manufac-
turers added this way also such sounds, that
do not really fit to the GM instrument patch
map. (Not only) therefore, the GM Level 1
Guidelines(Lehrman and Massey, 1998) discour-
age the use of banks at all on GM Level 1 com-
patible devices. We put on record that adding
new sounds to an existing system of fixed cate-
gories may lead to difficulties.
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2.4 Tagging

The Virus TI synthesizer(Access Music, 2004)
has a function for tagging each sound patch with
up to two values of a predefined set of 21 group
identifier. These identifiers are:

Acid Arpeggiator Bass Classic Decay
Digital Drums EFX FM Input Lead
Organ Pad Percussion Piano Pluck
String Vocoder
Favorites 1 Favorites 2 Favorites 3

Figure 3: Supported Tags of the Virus TI

By tagging a sound with one of these iden-
tifiers, the sound is declared to be a member
of a respective group of sounds. Interestingly,
if we look at the group names, we can identify
exactly the same categorization principles that
we already met before:

• Identifiers like Acid, Bass, Classic, Digital,
Drums, Lead, Organ, Pad, Percussion, Pi-
ano, Pluck and String suggest groups based
upon similarity to sounds that the user is
assumed to already know. Note that some
of the identifiers such as Drums or Percus-
sion denote a rather wide field of sounds.

• The identifier EFX (for sound effects) pre-
sumably denotes a group of sounds classi-
fied by its typical purpose (namely a sound
effect rather than e.g. a musical instru-
ment).

• Identifiers such as Arpeggiator, Decay, FM,
Input and Vocoder allude to how the sound
is created.

• The three Favorites groups finally can be
considered as generic groups for which the
user individually specifies the exact seman-
tics.

2.5 Parametric Categorization

State-of-the-art sound hardware provides sets
of parameters that are used to define sound
patches by mainly specifying how to create the
sound. This approach suggests to categorize
sounds based on the values of such parameter
sets. However, the size and structure of the
parameter sets differs widely across particular
devices.

The MIDI specification defines a few con-
trollers for controlling e.g. vibrato, envelope and
a selected set of filters. Most of these controllers
have post-processing characteristics, which is of

interest in particular for sample-based tone gen-
erators. In contrast, the parameter sets of syn-
thesizers are typically much bigger and broader
than those of tone generators, since they affect
also the core generation of sound. For example,
synthesizers often provide complex networks of
oscillators, filters, and controllers with numer-
ous possibilities of parameterization. Unfortu-
nately, most synthesizers have sound parame-
ters that are specific for each device individ-
ually. Even worse, a categorization based on
large and complex parameter sets makes the
categorization itself complex.

Due to the plethora of existing methods of
synthesis, it seems doubtful that there will
ever be agreement on a comprehensive stan-
dard set of sound parameters. Yet, more re-
cent scientific work suggests new parameters
that look like candidates for standardization.
Maier et. al.(Maier et al., 2005) characterize
sounds by quantitative properties that can be
directly computed from the acoustic signal. To
describe sounds, they compute for example the
amount of disharmonic spectrum peaks. Con-
ceptually somewhat related is the observation of
Nasca(Nasca, 2005), that in his software synthe-
sizer ZynAddSubFX, controlling the bandwidth
of each harmonic offers a powerful approach to
create realistic, warm sounds. Observations like
those of Maier and Nasca suggest that such pa-
rameters are good candidates for providing a
proper model of the way sounds are perceived
by human beings.

3 Discussion

From the survey in the previous section, we may
conclude the following observations:

Sounds may be categorized by

• their similarity to a prior known set of
sounds. This approach complies with a
composer’s way of thinking, if the composer
qualitatively specifies sounds (e.g. a soft,
bright, crystal sound).

• their purpose of use. This approach com-
plies with a producer’s way of thinking if
the producer has a targeted application of
sound (e.g. a phone ring).

• the way they are created. This approach
complies with a sound engineer’s way of
thinking when creating a new sound patch
with his or her favorite synthesizer (e.g. a
square wave vibrato modulated sawtooth
sound with flanger).

LAC2006
100



Regarding the structure of categorization, we
may note:

• Categories may have a hierarchical struc-
ture, thus creating a taxonomy.

• It is difficult to specify orthogonal cate-
gories. That means, in general a sound may
be a member of multiple categories.

• Since there are most likely always sounds
remaining that do not fall into any existing
category, it is useful to have generic cate-
gories to be specified by the user that cap-
ture the remaining sounds.

The Virus’ tagging approach may be used to
associate a sound to (at most two) categories.
However, tagging does not at all consider cate-
gories as a hierarchy, unless we support deduc-
tive tags: Assume, that we consider all drum
sounds to be percussive. Then, if a sound
is tagged “drum”, it should implicitly also be
tagged “percussive”. This way, we may specify
a hierarchy of tags. The hierarchical taxonomy
of acoustic instruments is a good candidate for
creating a hierarchy of tags.

4 The Sound Resources Ontology

Similar to the Virus TI, we follow the approach
of tagging sounds with tags that aim to charac-
terize qualitative attributes of the sound. For
a tagging-only description and looking up of
sounds, a simple relational database approach
is sufficient. However, we would like to group
sounds in a hierarchical manner and potentially
give tags a deductive semantics as described in
the previous section. Therefore, we prefer a
framework with deductive capabilities based on
ontological technologies.

4.1 OWL Knowledge Bases

Ontologies are an appropriate means for de-
scribing hierarchical structures of classes of in-
dividuals (also called concepts) in a flexible way,
based on description logic. The Web Ontol-
ogy Language OWL(Miller and Hendler, 2004)
with its three sub-languages OWL-Full, OWL-
DL and OWL-Lite has emerged as the maybe
most important standard for description logic
languages. For the remainder of this article, we
consider OWL-DL, which specifies description
logic semantics that is a decidable fragment of
first-order logic. In contrast to rule-based logic
such as Prolog or Datalog, the description logic

of OWL-DL focuses on features such as hierar-
chical concepts, properties (i.e. binary relations
between pairs of individuals or an individual
and a data value), and property and cardinality
restrictions. OWL can be expressed in XML-
based RDF (Miller et al., 2004) syntax, which
we use as source file format. The entire onto-
logical description, regardless whether stored in
memory or on disk, and regardless in which lan-
guage specified, is usually referred to as the so-
called knowledge base. Similar to a database, a
knowledge base typically may be updated, and
its current content may be queried (cp. Fig. 4).

Base
Knowlege

OWL

Knowledge

Updates
Base

Queries
Base

Knowledge

Figure 4: Updating and Querying an OWL
Knowledge Base

The initial knowledge base is cre-
ated from a file specified in RDF.
The current version is available at:
http://www.ipd.uka.de/~reuter/
ontologies/lad/sound/sound-registry.owl

4.2 Ontology Design

Following the discussion in Section 3, our on-
tology contains a concept Sound that serves as
common super class for all particular sounds.
Respecting the categories of GM Level 1 de-
vices, our ontology defines a subclass GMSound

that disjointly divides into the 16 GM cate-
gories, each represented by a concept of its
own. At the same time, GMSound also divides
into (generally overlapping) groups that corre-
spond to the different SoundQuality individu-
als. Each SoundQuality individual represents
a tag of those in Fig. 3 or of a few others,
that have deliberately been added, inspired by
the GM categories. That way, we basically
have two independent hierarchies of sounds,
thus giving the user more choices in querying
or browsing for a particular sound. The on-
tology also features a concept SoundResource.
Each individual of this class represents a re-
source that hosts Sound individuals. An exam-
ple for a SoundResource individual is a par-
ticular MIDI synthesizer. The ontology also
models a SoundPort concept with the subclass
ALSAPort such that for each SoundResource in-

LAC2006
101



dividual, a port can be looked up in order to
access the resource. A SoundSubscriber finally
may allocate any number of Sound individuals,
such that the number of available sounds left
can be tracked. Property constraints are de-
ployed to bind GM sounds to MIDI program
numbers.

5 Evaluation

To demonstrate the usefulness of our approach,
we walk through a short sample tour on explor-
ing the space of sounds, using The Protégé On-
tology Editor and Knowledge Acquisition Sys-
tem(Crubézy et al., 2005) for visualization (cp.
Fig. 5). This free, open source application
from Stanford University provides a graphical
user interface for viewing and editing ontolo-
gies. Note that there are a lot of OWL related
tools on the net(Miller and Hendler, 2004); in
this section, we just use Protégé for illustra-
tion purposes. One could also take some OWL
reasoner with API, for example Jena (Hewlett-
Packard Development Company, LP, 2005), and
develop appropriate command line tools or ded-
icated interactive applications for exploring the
space of sounds. However, in this section we
chose Protégé for the purpose of illustrative vi-
sualization.

Figure 5: The Sound Registry Ontology viewed
with Protégé

5.1 Querying for a Sound

We start querying for a sound by specifying
properties that the sound must fulfill. In the
illustrated example (Fig. 6), we ask for a sound
that fulfills the two sound qualities “Synth” and
“Bass” and, additionally, lives on the “MU-
50” sound resource. Note that properties have

a well-defined domain and range, such that
Protégé lets us select e.g. the sound quality only
from the actual list of available sound qualities
(rather than accepting any arbitrary individual
or data value).

Figure 6: Querying for a Sound on the MU-50
with “Synth” and “Bass” Qualities

Protégé returns a result consisting of three
sounds that match our constraints (Fig. 7).
We find the “Generic-GM-BassAndLead” sound
most interesting and double-click on it to find
out more about it.

Figure 7: The Search Results

A proper window pops up (cp. Fig. 8). In this
window we can see that the sound indeed ful-
fills our three constraints. Moreover, we learn
to know that this sound maps to MIDI program
88. Imagine that we were not using Protégé,
but a dedicated application embedded e.g. into
a sequencer software; then the software could
exploit the MIDI channel value to, for exam-
ple, set the MIDI program of the currently se-
lected track. We also notice the rdfs:comment
field with a detailed annotation regarding this
sound. Finally, in the field hasQuality, we
can see, that this sound not only fulfills the
qualities “Synth” and “Bass” as required in our
query, but also the quality “Lead”. In order to
look, what this quality means, we double-click
on “LeadQuality”.

Again, a proper window pops up (cp. Fig. 9).
This window shows a description of the “Lead”
quality in the field rdfs:comment, such that we
learn to know even more characteristics of the
sound than what we actually required in our
query.
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Figure 8: Viewing the Generic GM “Bass And
Lead” Sound Properties

Figure 9: Viewing the “Lead” Sound Quality
Properties

5.2 Browsing the Hierarchy of Sounds

Searching for sounds is also possible by
just browsing through the concept hierarchy.
Protégé displays the concept hierarchy as a tree
that can be expanded or collapsed at your choice
(cp. Fig. 10). Note that, due to possible multi-
ple inheritance of concepts in OWL, a concept
may appear multiple times in the tree. For ex-
ample, the GMOrganSound concept appears two
times in the tree, once as subclass of GMSound,
and another time as subclass of OrganSound.
Individuals of the concept Sound appear on the
leaf nodes of the tree and can be viewed in more
detail when selecting the appropriate leaf.

6 Future Work

Our prototype ontology focuses on the descrip-
tion of a generic GM Level 1 device as an exam-
ple sound resource. While we provide a general
ontological framework for virtually any kind of
sound resource, we currently do not provide a

Figure 10: Browsing through the Concept Hier-
archy of Sounds

description of any specific sound resource. The
task of providing ontological descriptions for in-
dividual sound resources remains open for dis-
cussion. After all, ontological descriptions are
desired for both, external hardware synthesizers
as well as software synthesizers running under
Linux. This work is in particular meant to initi-
ate discussion on and fostering the development
of proper standards.

6.1 Impact on ALSA Developers

The ontological description should be accessible
to virtually all users of the audio infrastructure.
Since ALSA(Jaroslav Kysela et al., 2006) has
established as the default sound architecture
on most current Linux distributions, responsi-
bility for provision and maintenance of the on-
tological description as well as a for providing
a query and management API should probably
fall to ALSA. ALSA developers may want to
develop and establish a proper infrastructure
and API. In fact, ALSA developers could try to
standardize the ontological framework as well as
the query and management API in an interop-
erable manner. Ontological descriptions could
then be provided independently of a particu-
lar operating system. This way, ALSA devel-
opers could pave the way for manufacturers of
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external hardware starting to provide ontolog-
ical descriptions of their hardware’s sound re-
sources by themselves. All operating systems
would greatly benefit from such a development.

6.2 Impact on Linux Audio Application

Developers

Just like external hardware providers, develop-
ers of software synthesizers under Linux should
provide ontological descriptions of their synthe-
sizers’ sound resources, following the standards
to be provided by ALSA developers.

Editing sound patches typically will affect the
ontological description. For example, given a
software synthesizer that lets the user create
new sounds, the software could enable the user
to describe the sound with tags, e.g. by dis-
playing check-boxes or a multiple selection list
with items for each tag. ALSA developers may
want to standardize a default set of tags. Given
such tags and other user settings, the software
synthesizer should be capable of generating on
the fly a corresponding ontological description
of the sound.

If Linux audio developers feel that it is of too
much burden for software synthesizers to create
ontologies, ALSA developers may alternatively
develop a sound resource query API, that each
software synthesizer should implement. The on-
tological description of all software synthesizers
could then be created and managed completely
by ALSA.

7 Conclusion

We showed that in complex systems with
a plethora of sound resources, characterizing
sounds e.g. by classification is an essential task
in order to efficiently look up a particular sound.
Our historical survey on sound classification elu-
cidated the importance of this task.

We have demonstrated the feasibility of de-
ploying ontological technology for describing
and looking up sounds and sound resources. We
developed a terminological knowledge base that
serves as an ontological framework, and we cre-
ated a generic GM Level 1 device as facts knowl-
edge that serves as an example on how to use
our framework.

While we focus on the technical realization
of the OWL-DL based framework, so far we
leave open how to integrate this framework into
the operating system. If Linux audio develop-
ers feel that looking up sounds and sound re-
sources is worth being solved in a uniform way

under Linux, further discussion on the integra-
tion with applications, ALSA and maybe other
parts of the operating system will be required.
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