
Realtime Audio vs. Linux 2.6

Lee Revell
Mindpipe Audio

305 S. 11th St. 2R
Philadelphia, PA, 19107

USA,
rlrevell@joe-job.com

Abstract

From the beginning of its development kernel 2.6
promised latency as low as a patched 2.4 kernel.
These claims proved to be premature when testing of
the 2.6.7 kernel showed it was much worse than 2.4. I
present here a review of the most significant latency
problems discovered and solved by the kernel devel-
opers with the input of the Linux audio community
between the beginning of this informal collaboration
in July 2004 around kernel 2.6.7 through the most re-
cent development release, 2.6.16-rc5. Most of these
solutions went into the mainline kernel directly or
via the -mm, voluntary-preempt, realtime-preempt,
and -rt patch sets maintained by Ingo Molnar (Mol-
nar, 2004) and many others.

Keywords

Latency, Preemption, Kernel, 2.6, Realtime

1 Introduction

In mid-2004 Paul Davis, and other Linux au-
dio developers found that the 2.6 kernel, despite
promises of low latency without custom patches,
was essentially unusable as an audio platform
due to large gaps in scheduling latency. They
responded with a letter to the kernel developers
which ignited intense interest among the kernel
developers (Molnar, 2004) in solving this prob-
lem. Massive progress was made, and recent 2.6
releases like 2.6.14 provide latency as good or
better than the proprietary alternatives. This
is a review of some of the problems encountered
and how they were solved. . . .

2 Background

The main requirements for realtime audio on a
general purpose PC operating system are appli-
cation support, driver support, and low schedul-
ing latency. Linux audio began in earnest
around 2000 when these three requirements
were met by (respectively) JACK, ALSA, and
the low latency patches for Linux 2.4 (”2.4+ll”).
The 2.6 kernel promised low scheduling latency

(and therefore good audio performance) with-
out custom patches, as kernel preemption was
available by default. However early 2.6 ker-
nels (2.6.0 through approximately 2.6.7) were
tested by the Linux audio development com-
munity and found to be a significant regres-
sion from 2.4+ll. These concerns were com-
municated privately to kernel developer Ingo
Molnar and 2.6 kernel maintainer Andrew Mor-
ton; Molnar and Arjan van de Ven responded
in July 2004 with the ”Voluntary Kernel Pre-
emption patch” (Molnar, 2004). The name is
actually misleading - ’Voluntary’ only refers to
the feature of turning might sleep() debugging
checks into scheduling points if preemption is
disabled. The interesting features for realtime
audio users, who will always enable preemption,
are the additional rescheduling points with lock
breaks that Molnar and van de Ven added wher-
ever they found a latency over 1ms.

3 Latency debugging mechanisms

The first requirement to beat Linux 2.6 into
shape as an audio platform was to develop a
mechanism to determine the source of an xrun.
Although kernel 2.6 claims to be fully pre-
emptible, there are many situations that pre-
vent preemption, such as holding a spinlock, the
BKL, or explicitly calling preempt disable(), or
any code that executes in hard or soft interrupt
context (regardless of any locks held).

The first method used was ALSA’s ”xrun de-
bug” feature, about the crudest imaginable la-
tency debugging tool, by which ALSA simply
calls dump stack() when an xrun is detected, in
the hope that some clue to the kernel code path
responsible remains on the stack. This crude
mechanism found many bugs, but an improved
method was quickly developed.

In the early days of the voluntary preemp-
tion patch, Molnar developed a latency trac-
ing mechanism. This causes the kernel to trace
every function call, along with any operation

LAC2006
21

that affects the ”preempt count”. The pre-
empt count is how the kernel knows whether
preemption is allowed - it is incremented or
decremented according to the rules above (tak-
ing spinlock or BKL increments it, releasing
decrements, etc) and preemption is only allowed
when the count is zero. The kernel tracks the
maximum latency (amount of time the preempt
count is nonzero) and if it exceeds the previous
value, saves the entire call stack from the time
the preempt count became positive to when it
became negative to /proc/latency trace).

So rather than having to guess which kernel
code path caused an xrun we receive an ex-
act record of the code path. This mechanism
has persisted more or less unchanged from the
beginning of the voluntary preemption patches
(Molnar, 2004) to the present, and within a
week of being ported to the mainline kernel
had identified at least one latency regression
(from 2.6.14 to 2.6.15, in the VM), and has
been used by the author to find another (in
free swap cache()) in the past week. Dozens of
latency problems have been fixed with Molnar’s
tracer (everything in this paper, unless other-
wise noted); it is the one of the most successful
kernel debugging tools ever.

4 The BKL: ReiserFS 3

One of the very first issues found was that Reis-
erFS 3.x was not a good choice for low la-
tency systems. Exactly why was never really
established, as the filesystem was in mainte-
nance mode, so any problems were unlikely to
be fixed. One possibility is that reiser3’s exten-
sive use of the BKL (big kernel lock - a coarse
grained lock which dates from the first SMP im-
plementations of Linux, where it was used to
provide quick and dirty locking for code with
UP assumptions which otherwise would have to
be rewritten for SMP). ReiserFS 3.x uses the
BKL for all write locking. The BKL at the
time disabled preemption, which is no longer
the case, so the suitability of ReiserFS 3.x for
low latency audio systems may be worth revisit-
ing. Hans Reiser claims that ReiserFS 4.x solves
these problems.

5 The BKL: Virtual console
switching

One of the oldest known latency issues involved
virtual console (VC) switching (as with Alt-Fn),
as like ReiserFS 3.x this process relies on the
BKL for locking which must be held for the

duration of the console switch to prevent dis-
play corruption. This problem which had been
known since the 2.4 low latency patches was
also resolved with the introduction of the pre-
emptible BKL.

6 Hardirq context

Another issue discovered in the very early test-
ing of the voluntary preemption patches was ex-
cessive latency caused by large IO requests by
the ATA driver. It had previously been known
that with IDE IO completions being handled
in hard IRQ context and a maximum request
size of 32MB (depending on whether LBA48
is in effect which in turn depends on the size
of the drive), scheduling latencies of many mil-
liseconds occurred when processing IO in IRQ
context.

This was fixed by adding the sysfs tunables:
/sys/block/hd*/queue/max sectors kb
which can be used to limit the amount of IO

processed in a single disk interrupt, eliminating
excessive scheduling latencies at a small price in
disk throughput.

Another quite humorous hardirq latency bug
occurred when toggling Caps, Scroll, or Num
Lock - the PS/2 keyboard driver actually spun
in the interrupt handler polling for LED status
(!). Needless to say this was quickly and quietly
fixed.

7 Process context - VFS and VM
issues

Several issues were found in the VFS and VM
subsystems of the kernel, which are invoked
quite frequently in process context, such as
when files are deleted or a process exits. These
often involve operations on large data struc-
tures that can run for long enough to cause
audio dropouts and were most easily triggered
by heavy disk benchmarks (bonnie, iozone,
tiobench, dbench).

One typical VFS latency issue involved
shrinking the kernel’s directory cache when a
directory with thousands of files was deleted;
a typical VM latency problem would cause au-
dio dropouts at process exit when the kernel
unmapped all of that processes virtual mem-
ory areas with preemption disabled. The sync()
syscall also caused xruns if large amounts of
dirty data was flushed.

One significant process-context latency bug
was discovered quite accidentally, when the au-
thor was developing an ALSA driver that re-

LAC2006
22

quired running separate JACK instances for
playback and capture. A large xrun would be
induced in the running JACK process when an-
other was started. The problem was identified
as mlockall() calling into make pages present()
which in turn called get user pages() causing
the entire address space to be faulted in with
preemption disabled.

Process-context latency problems were fortu-
nately the easiest to solve, by the addition of a
reschedule with lock break within the problem-
atic loop.

8 Process context - ext3fs

While ReiserFS 3.x did not get any latency
fixes as it was in maintenance mode, EXT3FS
did require several changes to achieve accept-
able scheduling latencies. At least three latency
problems in the EXT3 journalling code (a mech-
anism for preserving file system integrity in the
event of power loss without lengthy file sys-
tem checks at reboot) and one in the reserva-
tion code (a mechanism by which the filesystem
speeds allocation by preallocating space in an-
ticipation that a file will grow) were fixed by the
maintainers.

9 Softirq context - the struggle
continues

Having covered process and hardirq contexts we
come to the stickiest problem - softirqs (aka
”Bottom Halves”, known as ”DPCs” in the
Windows world - all the work needed to han-
dle an interrupt that can be delayed from the
hardirq, and run later, on another processor,
with interrupts enabled, etc). Full discussion of
softirqs is outside the scope (see (Love, 2003))
of this paper but an important feature of the
Linux implementation is that while softirqs nor-
mally run immediately after the hardirq that en-
abled them on the same processor in interrupt
context, under load, all softirq handling can be
offloaded to a ”softirqd” thread, for scalability
reasons.

An important side effect is that the kernel
can be trivially modified to unconditionally run
softirqs in process context, which results in a
dramatic improvement in latency if the audio
system runs at a higher priority than the softirq
thread(s). This is the approach taken by the -rt
kernel, and by many independent patches that
preceded it.

The mainline Linux kernel lacks this feature,
however, so minimizing scheduling latency re-

quires limiting the amount of time spent in
softirq context. Softirqs are used heavily by the
networking system, for example looping over a
list of packets delivered by the network adapter,
as well as SCSI and for kernel timers (Love,
2003). Fortunately the Linux networking stack
provides numerous sysctls that can be tuned to
limit the number of packets processed at once,
and the block IO fixes described elsewhere for
IDE also apply to SCSI, which does IO comple-
tion in softirq context.

Softirqs are the main source of excessive
scheduling latencies that, while rare, can still
occur in the latest 2.6 kernel as of this writ-
ing (2.6.16-rc5). Timer based route cache flush-
ing can still produce latencies over 10ms, and
is the most problematic remaining softirq as no
workaround seems to be available; however the
problem is known by the kernel developers and
a solution has been proposed (Dumazet, 2006).

10 Performance issues

The problems described so far mostly fit the
pattern of too much work being done at once in
some non-preemptible context and were solved
by doing the same work in smaller units. How-
ever several areas where the kernel was simply
inefficient were resolved, to the benefit of all
users.

One such problem was kallsyms lookup(), in-
voked in cases like printk(), which did a lin-
ear search over thousands of symbols, caus-
ing excessive scheduling latency. Paulo Mar-
ques solved this problem by rewriting kall-
syms lookup() to use a more efficient search al-
gorithm. The frequent invocation of SHATrans-
form() in non-preemptible contexts to add to
the entropy pool was another latency problem
solved by rewriting the code to be more efficient.

11 Non-kernel factors

The strangest latency problem identified was
found to have an origin completely outside the
kernel. Testing revealed that moving windows
on the desktop reliably caused JACK to report
excessive delays. This is a worse situation than
an xrun as it indicates the audio device stopped
producing/consuming data or a hardware level
timing glitch occurred, while an xrun merely
indicates that audio was available but JACK
was not scheduled in time to process it. The
problem disappeared when 2D acceleration was
disabled in the X configuration which pointed
clearly to the X display driver - on Linux all

LAC2006
23

hardware access is normally mitigated by the
kernel except 2D XAA acceleration by the X
server.

The VIA Unichrome video card used in test-
ing has a command FIFO and a status register.
The status register tells the X server when the
FIFO is ready to accept more data. (Jones and
Regehr, 1999) describes certain Windows video
drivers which improve benchmark scores by ne-
glecting to check the status register before writ-
ing to the FIFO; the effect is to stall the CPU if
the FIFO was full. The symptoms experienced
were identical to (Jones and Regehr, 1999) - the
machine stalled when the user dragged a win-
dow. Communication with the maintainer of
the VIA unichrome driver (which had been sup-
plied by the vendor) confirmed that the driver
was in fact failing to check the status register
and was easily fixed.

12 The -rt kernel and the future

The above solutions all have in common that
they reduce scheduling latencies by minimiz-
ing the time the kernel spends with a spin-
lock held, with preemption manually disabled,
and in hard and soft IRQ contexts, but do not
change the kernels behavior regarding which
contexts are preemptible. Modulo a few re-
maining, known bugs, this approach is capable
of reducing the worst case scheduling latencies
to the 1-2ms range, which is adequate for au-
dio applications. Reducing latencies further re-
quired deep changes to the kernel and the rules
about when preemption is allowed. The -rt ker-
nel eliminates the spinlock problem by turning
them into mutexes, the softirq by the softirq
method previously described, and the hardirq
issue by creating a set of kernel threads, one per
interrupt line, and running all interrupt han-
dlers in these threads. These changes result in
a worst case scheduling latency close to 50 mi-
croseconds which approaches hardware limits.

13 Conclusions

One of the significant implications of the story
of low latency in kernel 2.6 is that I believe it
vindicates the controversial ”new kernel devel-
opment process” (Corbet, 2004) - it is hard to
imagine Linux 2.6 evolving into a world class au-
dio platform as rapidly and successfully as it did
under a development model that valued stabil-
ity over progress. Another lesson is that in op-
erating systems as in life, history repeats itself.
Much of the work done on Linux 2.6 to support

soft realtime applications, like IRQ threading,
was pioneered by Solaris engineers in the early
1990s (Vahalia, 1996).

14 Acknowledgements

My thanks go to Ingo Molnar, Paul Davis, An-
drew Morton, Linus Torvalds, Florian Schmidt,
and everyone who helped to evolve Linux 2.6
into a world class realtime audio platform.

References

Jonathan Corbet. 2004. Another look
at the new development model.
https://lwn.net/Articles/95312/.

Eric Dumazet. 2006. Re: Rcu la-
tency regression in 2.6.16-rc1.
http://lkml.org/lkml/2006/1/28/111.

Michael B. Jones and John Regehr. 1999. The
problems you’re having may not be the prob-
lems you think you’re having: Results from a
latency study of windows nt. In Proceedings
of the 7th Workshop on Hot Topics in Oper-
ating Systems (HotOS VII), pages 96–101.

Robert Love. 2003. Linux Kernel Development.
Sams Publishing, Indianapolis, Indiana.

Ingo Molnar. 2004. [announce] [patch]
voluntary kernel preemption patch.
http://lkml.org/lkml/2004/7/9/138.

Uresh Vahalia. 1996. Unix Internals: The New
Frontiers. Prentice Hall, Upper Saddle River,
New Jersey.

LAC2006
24

