
128 Is Not Enough - Data Structures in Pure Data

Frank Barknecht
GOTO10

Neusser Wall 2
D-50670 Köln,

Germany,
fbar@footils.org

Abstract

A lesser known feature of Miller Puckette’s popu-
lar audio and media development framework “Pure
Data” is the possibility to create user defined graph-
ical data structures. Although the data structures
are included in Pd for several years, only recently a
sigificant number of users discovered and used this
feature. This paper will give an introduction to the
possibilities of Pd’s data structures for composers
and musicians and present several example applica-
tions.

Keywords

Pure Data, graphical score, multimedia, program-
ming language, composition

1 Introduction

Since its introduction in 19961 Miller Puck-
ette’s2 software environment Pure Data3, or
short Pd, has grown to become one the most
popular open source applications amongst me-
dia artists. Today Pd not only supports the
production of audio or midi data - with exten-
sions like Gem or PDP it is also widely used
in the field of video art and multimedia. While
the user base of Pd literary is huge compared
to most other related free software, one central
feature of Pd is not in such a wide use, although
it was one of the motivations to write Pd in the
first place, according to (Puckette, 1996):

Pd’s working prototype attempts to
simplify the data structures in Max to
make these more readily combined into
novel user-defined data structures.

“Novel user-defined data structures” is the
key term here. Simple numbers, let alone just
128 of them as in the MIDI standard, do not
provide a sufficient vocabulary for artists in any

1(Puckette, 1996)
2www-crca.ucsd.edu/~msp/
3www.puredata.org

field. Moreover predefining a limited vocabu-
lary at all is not flexible enough for unforseen
and novel uses.

In (Puckette, 2002) Puckette further states
about his motivation:

The underlying idea is to allow the
user to display any kind of data he or
she wants to, associating it in any way
with the display.

So the data structures Pd offers carry another
property: They are graphical structures, that is,
they have a visual representation as well.

Defining a structure for data alone is of not
much use unless there are ways to access and
change the stored data. For this task Pd in-
cludes several accessor objects, which will be
explained below. It also is possible to edit the
stored data through the graphical representa-
tion of a structure using mouse operations.

2 Defining data structures in Pd

The central object to create a structure defini-
tion in Pd is called struct. While a struct
object theoretically can be created anywhere in
a Pd patch, it generally is put into a Pd sub-
patch to be able to associate it with instructions
for its graphical representation.

Every struct needs to be given a name
and then one or more fields to carry its data.
For example a structure defining a note event
might look like this: struct note float freq
float vel float len.

Besides fields for floating point numbers, a
structure can also have fields of type symbol
which stores a word, and array. The latter
can be used to carry collections of structures
defined elsewhere in Pd. Members of an array
field have to be of the same type. An exam-
ple for this could be a score structure, which
holds several of our note structs in a “melody”
and also gets a score-name field: struct score

LAC2006
61



symbol score-name array melody note. A
fourth type that can be used in a struct defi-
nition is the list type, which similar to array
can hold a collection of other structures, how-
ever these elements can be of different struct
types.

Two field names are treated in a special way:
float x and float y are used to specify the
x- and y- coordinates of a structure’s graphical
representation. Such representations are speci-
fied by adding objects for drawing instructions
to the same subpatch, that carries the struc-
ture definition. A very simple instruction is
drawnumber, which just displays the value of
the field given as its first argument: drawnumber
freq will draw the current value of the freq-field
of a structure. It also is possible to change that
value using the mouse by click and drag.

3 Pointer Magic

The structure definition in Pd can be compared
to struct in programming languages like C.
This analogy is taken even further if we look
at the way, instances of data structures are cre-
ated and their data is accessed. Because this is
done through pointers much like in C.

Pointers in Pd are a special data type. Other
types would be float and symbol — also called
“atoms”, because they reference a single, atomic
value — and lists made of several atoms. Point-
ers can be made to reference instances of struct
structures. Pd has an object to hold these
pointers which is called pointer as would be
expected. To make a pointer object actually
point to something in a Pd patch, it has to be
told, where to find that something. Subpatches
play an important role here.

3.1 Subpatches as named regions

Subpatches in Pd are commonly used to group
related functionality and to make better use of
the limited screen estate. However they also
have a syntactic meaning, because they create
a named region inside of a Pd patch. This re-
gion can be a target for various operations. Ev-
ery subpatch in Pd can be accessed by sending
messages to a receiver that is automatically cre-
ated by prepending the subpatch’s name with
the string “pd-”. An example for an opera-
tion supported by subpatches is clear, which
deletes every object inside the target subpatch.
A subpatch called “editor” thus can be cleared
by sending the message clear to a sender called
pd-editor as shown in Figure 1:

Figure 1: clearing a subpatch with a message

Now if a subpatch contains instances of data
structures, these are organized as a linked list,
which can be traversed using pointer objects.
For this, pointer supports traversal operations
initiated by (amongst others) the following mes-
sages:

• bang: output pointer to current element

• next: output pointer to next element

• traverse pd-SUBPATCH: position pointer
at the start of the list inside the subpatch
called “SUBPATCH”.

3.2 Creating instances of data
structures

Given a pointer to any position in a subpatch
canvas, it is possible to insert new instances of
structures using the append object. For this,
append needs to know the type of structure to
create and at least one of the fields to set.

Using our note example from above, one could
use append like this: append note freq. For
every field specified this way, the append object
will generate an inlet to set the creation value
of this field in the new instance. Additionally it
will have a further, rightmost inlet, which has
to be primed with a pointer, that specifies the
position, after which the new structure instance
should be inserted.

Supposing we have a subpatch called editor
in our patch, we can get a pointer to the start of
this subpatch by sending the message traverse
pd-editor followed by bang to a pointer ob-
ject, that itself is connected to appends right-
most inlet. Sending a number like 60 to the

LAC2006
62



leftmost inlet (the freq inlet) will then create
a graphical instance of struct note inside the
subpatch editor, whose frequency field is set to
60 and whose other fields are initialized to zero.
For now, as we only used a drawnumber freq
as single drawing instruction, the graphical rep-
resentation is quite sparse and consists just of a
number in the top-left corner of the subpatch.

3.3 Get and set
The current values of fields in this new in-
stance of a struct note can be read using the
get-object, which on creation needs to know,
which struct-type to expect and which fields
to read out. If a valid pointer is sent to a get
note freq vel object, it will output the cur-
rent value of the frequency and the velocity field
stored at that pointer’s position.

The opposite object is called set and allows
us to set the fields inside an instance, that is
specified by sending a pointer to the rightmost
inlet of set first.

By traversing a whole subpatch using a com-
bination of traverse and next messages sent
to a pointer that is connected to get, reading
out a whole “score” is easily done.

Accessing array fields is slightly more com-
plicated, because it requires an intermediate
step: First we need to get the array-field out
of the initial pointer of the structure. The ar-
ray field is itself represented by a pointer. This
pointer however can be sent to the right inlet of
an element object, that on its left inlet accepts
an integer number to select the element inside
of the array by this index number.

4 Drawings

Unless the subpatch containing the struct def-
inition also has drawing instructions, the struc-
ture instances will be invisible, when they are
created. Pd offers several graphical primitives
to display data structures. drawnumber was al-
ready mentioned as a way, to draw a numeric
field as a number. If the struct has float-typed
fields called x and y this number also can be
moved around in the subpatch in both dimen-
sions. The x- and y-fields are updated according
to the current position with the upper left hand
corner of the subpatch window being at a point
(0,0). The x-axis extends from left to right, the
y-axis extends from top to bottom to make (0,0)
stay at the upper left.

The various drawing primitives accept coor-
dinates to specify their positions and dimen-
sions as well, however these are calculated in

a local coordinate system, whose (0,0)-point is
translated to the point specified by the value
of the fields float x float y in the struct
definition. For example, using this definition
struct coord float x float y we can use
two drawnumber objects to draw x and y with-
out overlapping by creating drawnumber x 0 0
and drawnumber x 0 15. The y-field will be
drawn 15 pixels below the x-field, as shown in
figure 2 (which also shows colors and labels in
drawnumber).

Figure 2: relative positioning

4.1 More drawing instructions
Further objects for drawning data are
drawpolygon, filledpolygon, drawcurve,
filledcurve and plot. They are described
in their respective help patches. Here we
will only take a look at drawpolygon, that is
used to draw connected line segments. Like
all drawing instructions it accepts a list of
positional arguments to control its appearance
and behavior. In the case of drawpolygon
these are:

• optional flag -n to make it invisible initially

• alternatively a variable given by -v VAR to
remotely control visibility

• Color specified as RGB-values.

• line-width in pixels

• two or more pairs of coordinates for the
start and end points of the line segments.

The next instruction would draw a blue
square of width w: drawpolygon 9 1 0 0 w 0
w w 0 w 0 0 (Fig. 3)

The size of the square, that is, the variable
w in this structure, can be changed using the
mouse or with set operations. The current
value of w always is accessible through the get
object, see section 3.3.

LAC2006
63



Figure 3: a blue square

4.2 Persistence
Saving a patch containing instances of data
structures will also save the created data struc-
tures. Additionally it is possible to export the
current contents of a subpatch to a textfile by
sending the message write filename.txt to
the subpatch’s receiver (described in 3.1) and
read it back in using a similar read-message.

Such a persistence file contains a textual de-
scription of the data structure templates and
their current values, e.g. for our square-
structure:

data;
template square;
float x;
float y;
float w;
;
;
square 136 106 115;

5 Data structures in action

Instead of explaining all the features in detail,
that data structures in Pd provide, I would like
to present some examples of how they have been
used.

5.1 Graphical score
Pd’s data structures most naturally fit the needs
of preparing and playing graphical scores. In
his composion “Solitude”, north american com-
poser and Pd developer Hans-Christoph Steiner
used data structures to edit, display and se-
quence the score. The graphical representation
also controls the sequencing of events. He de-
scribes his approach in a post to the Pd mailing
list:4

4lists.puredata.info/pipermail/pd-list/
2004-12/024808.html

The experience was a good combina-
tion of visual editing with the mouse
and text editing with the keyboard.
The visual representation worked well
for composition in this style. [My]
biggest problem was finding a way to
represent in the score all of the things
that I wanted to control. Since I
wanted to have the score generate the
piece, I did not add a couple features,
like pitch shifting and voice allocation
control, which I would have liked to
have.

Both the Pd patch (Fig. 4) and a recording of
“Solitude” are available at the composer’s web-
site.5

Figure 4: Score for “solitude” by Hans-
Christoph Steiner

5.2 Interaction
“Solitude” changes the data stored inside a
structure only during the compositional phase,
but not in the performance of the piece. An ex-
ample, where data structures are manipulated
“on the fly” is the recreation of the classic video
game “PONG” by the author6, as shown in
Fig. 5.

This simple piece uses the ratio of the current
score in the game (1/2 in Fig. 5) to influence a
fractal melody played in the background. The
x-position of the ball is read out by a get-object
to pan the stereo position of the melody.

5.3 GUI-building
Data structures also are useful to implement
custom GUI elements for Pd. A collection of

5at.or.at/hans/solitude/
6footils.org/cms/show/27

LAC2006
64



Figure 5: “PONG” by Frank Barknecht

these is currently built by Chris McCormick.7
Figure 6 shows an envelope generator and a
pattern seqencer of variable length, that can be
reused several times in a patch.

Figure 6: Two GUI objects by Chris Mc-
Cormick

5.4 Visualisation
Many advanced concepts in computer music or
digital art in general deal with rather abstract,
often mathematical issues. Data structures can
help with understanding these concepts by con-
necting the abstract with the visible world.

The german composer Orm Finnendahl cre-
ated such interactive Pd patches using data
structures to explain things like the sampling
theorem or granular synthesis.

With his patches “pmpd-editor” and “msd-
editor” (Fig. 7) the author of this paper wrote
tools to explore particle systems (masses con-
nected by springs) interactively. A user can
create the topology for a particle system and

7mccormick.cx/viewcvs/s-abstractions/

Figure 7: Editor for mass-spring-damper-
topologies by Frank Barknecht

animate it directly inside the Pd patch. Vari-
ous helper functions provide means for import-
ing and exporting such topologies to be used in
other applications as 3D-modellers for example.
The particle systems designed with the editor
can also generate control data to influence var-
ious synthesis methods. The editor is available
in the CVS repository of the Pure Data devel-
oper community at pure-data.sf.net.

5.5 Illustration
Finally we get back to another original motiva-
tion for writing Pd in the first place. In (Puck-
ette, 1996) Puckette writes:

Pd’s first application has been to pre-
pare the figures for an upcoming sig-
nal processing paper by Puckette and
Brown.

Almost a decade later, Puckette is still using
Pd to illustrate paper, this time for his book
project “Theory and Techniques of Electronic
Music”.8

All graphics in this book were made using Pd
itself, like the one shown in Fig. 8.

6 Conclusion

This paper could only give a short introduc-
tion to Pd’s data structures. As always they

8So far only available online at: crca.ucsd.edu/
~msp/techniques.htm

LAC2006
65



Figure 8: Illustration courtesy by M. Puckette
from his book: “Theory and Techniques of Elec-
tronic Music”

are best learned by studying examples. Pd
comes with documentation patches that can be
edited and changed. Most patches that use
data structures are collected in the directory
“doc/4.data.structures” of the Pd documenta-
tion. The HTML-manual of Pd contains further
information in chapter “2.9. Data structures“.9

Pd’s data structures are powerful tools that
can greatly enhance the possibilities of Pd. In
some areas they still are a bit awkward to use
though. For example animating large numbers
of data structures may influence audio gener-
ation and even lead to dropped samples and
clicks. There also still are issues with provid-
ing a smooth framerate. In the author’s view
data structures thus cannot replace specialized
extensions like Gem in this regard yet. If they
should try to do so at all, remains an open ques-
tion.

However problems like this can only be found
and fixed, if more artists and musicians in the
Pd community will actually use them—a classi-
cal chicken and egg problem. Thus it is hoped
that this paper will create more interest in Pure
Data’s data structures.

9www-crca.ucsd.edu/~msp/Pd_documentation/

7 Acknowledgements

References

M. Puckette. 1996. Pure data: another inte-
grated computer music environment. In Proc.
the Second Intercollege Computer Music Con-
certs, pages 37–41.

M. Puckette. 2002. Using pd as a score lan-
guage. In ICMC Proceedings, pages 184–187.

LAC2006
66


