Development of a Composer’s
Sketchbook

Georg BOENN
School of Electronics
University of Glamorgan
Pontypridd CF37 1DL
Wales, UK
gboenn@glam.ac.uk

Development of a Composer’s
Sketchbook

1. Computer Assisted Composition
2. Algorithms
3. Implementation
4. Future?

Development of a Composer’s
Sketchbook

1. Computer Assisted Composition

Development of a Composer’s
Sketchbook

open source
GNU General Public License v2
C++, OOP

cross-platform: Linux, Win, Mac
wxWidgets framework

Computer Assisted Composition

» Applications assist the composer to
manage the manifold of:

— musical ideas

— symbolic representations
— musical structures

— sounds

— performances

Intelligent assistant

sketchbook paradigm
freedom of choice

changes of initial parameters can trigger
surprising twists in the work

direct and immediate comparisons

iInvention and modelling of melodic
structures

e user-defined database of musical cells
within the program

e use of three-note cells which came out
from the investigation of the major and
minor third

« Analysis of pieces by Arnold Schoenberg
and Charles Ives led to the following
matrix:

Do you know what the matrix 1s?

A

ursatz = e - permutations ---------

L 3 L

| ¥ - b—'—f'_gi_.i_'_

partial =
inversions

|
|

| ——y —F ._"E

Do you know what the matrix is?

e 4 usatz® cells
e permutations (horizontal)

 partial inversion (vertical):

— Invert the first interval but keep the second
one untouched

— Or, keep the first interval of the cell original
and invert the second one

partial inversion

Arnold Schoenberg, Op. 19

apes = 2 Iﬁ__?f\—
e

T

Development of a Composer’s
Sketchbook

1. Computer Assisted Composition
2. Algorithms

Fractal Chaining

e Generative algorithms

bui
cel

* Re

ding chains from matrix
S

olacement of an interval

by two different intervals
summing up to the original
Interval (figure a)

Recursive application of

fractal chaining (figure b)

Chain overlapping 2 notes

* Looking at the last
Interval of the sequence

e Search the matrix for a

Tﬁ]\ﬂ /@5 match

e => adding a new note to
the sequence

] = overlap O=mmrﬂmk o with or _vvhithout h_istory
check: is a new pitch-

class added to the
sequence or not?

Chain overlapping 1 note

[1= overlap O = history check

 First taking a random cell
from the matrix

* Let one note overlap

e Check or not whether new
pitch classes are added or
not, in which case the
program tries to fit a
different cell from the
database

Combining both algorithms

bt

= overlap O = history check

Chain without overlap

e take a random first
Interval from the matrix

« Use the resulting pitch-

class as the basis for
frfL[f’L another cell chosen from

[the matrix

X = random interval

* No history check

Development of a Composer’s
Sketchbook

1. Computer Assisted Composition
2. Algorithms
3. Implementation

Serialize It

84
CCompStaff 72 72 720 107 7 2 72 107

CCompClef7272001 3

CCompNote 102 720017 76
CCompNote 123720017 72
CCompNote 144 720017 77
CCompNote 16572001 7 82

CCompNote 186 72001 7 81

the database

W T T

/l Name: MakeMelody.h

/I Purpose: Class for calculating melodies

/I Author: Georg Boenn

/I Modified by: Georg Boenn

/l Created: 07/01/05

/I Modified: Sun 17 Apr 2005 04:59:26 PM BST
/I Copyright: (c) Georg Boenn

/I Licence: GNU General Public License v2
T T T T

#ifndef ___MakeMelody_h__
#define __MakeMelody_h___

#include "LList.nh"
#include "DList.h"
#include "CBuffer.h"
#include "Random.h"

constint CELLDB_MAX = 122;

const intb21[3] ={62,60,63};
const intb22[3] = {61,62,60};
const intb23[3] = {63,62,64};
const intb24[3] = {59,61,60};
constintb25[3] = {63,61,62};
const intb26[3] = {60,63,61};
const intb27[3] = {60,64,61};
const intb28[3] = {63,60,64};
constintn21[3] ={60,64,62};
constintn22[3] = {60,63,62};

MakeMelody::MakeMelody()

{

bptr[0] = new Buffer(b21,3);
bptr[1] = new Buffer(b22,3);
bptr[2] = new Buffer(b23,3);
bptr[3] = new Buffer(b24,3);
bptr[4] = new Buffer(b25,3);
bptr[5] = new Buffer(b26,3);
bptr[6] = new Buffer(b27,3);
bptr[7] = new Buffer(b28,3);

bptr[8] = new Buffer(n21,3);

bptr[9] = new Buffer(n22,3);

bptr[10] = new Buffer(n23,3);
bptr[11] = new Buffer(n24,3);
bptr[12] = new Buffer(n25,3);
bptr[13] = new Buffer(n26,3);
bptr[14] = new Buffer(n27,3);
bptr[15] = new Buffer(n28,3);

bptr[16] = new Buffer(b31,3);
bptr[17] = new Buffer(b32,3);
bptr[18] = new Buffer(b33,3);
bptr[19] = new Buffer(b34,3); // etcetera

Development of a Composer’s
Sketchbook

1. Computer Assisted Composition
2. Algorithms
3. Implementation
4. Future?

Future?

MIDI and RealTime Audio output on all
platforms

Rhythm classes

Context-free grammar editor
Polyphony

Chord database

Advanced Notation capabilities

References

o WWW.WXWINAOWS.0rg
o Wwww.mididesign.com
o www.boenn.de/composer

