
Development of a Composer’s
Sketchbook

Georg BOENN
School of Electronics

University of Glamorgan
Pontypridd CF37 1DL

Wales, UK
gboenn@glam.ac.uk

Development of a Composer’s
Sketchbook

1. Computer Assisted Composition
2. Algorithms

3. Implementation
4. Future?

Development of a Composer’s
Sketchbook

1. Computer Assisted Composition

Development of a Composer’s
Sketchbook

• open source
• GNU General Public License v2
• C++, OOP
• cross-platform: Linux, Win, Mac
• wxWidgets framework

Computer Assisted Composition

• Applications assist the composer to
manage the manifold of:
– musical ideas
– symbolic representations
– musical structures
– sounds
– performances

intelligent assistant

• sketchbook paradigm
• freedom of choice
• changes of initial parameters can trigger

surprising twists in the work
• direct and immediate comparisons

invention and modelling of melodic
structures

• user-defined database of musical cells
within the program

• use of three-note cells which came out
from the investigation of the major and
minor third

• Analysis of pieces by Arnold Schoenberg
and Charles Ives led to the following
matrix:

Do you know what the matrix is?

Do you know what the matrix is?

• 4 „usatz“ cells
• permutations (horizontal)
• partial inversion (vertical):

– Invert the first interval but keep the second
one untouched

– Or, keep the first interval of the cell original
and invert the second one

partial inversion

Development of a Composer’s
Sketchbook

1. Computer Assisted Composition
2. Algorithms

Fractal Chaining

• Generative algorithms
building chains from matrix
cells

• Replacement of an interval
by two different intervals
summing up to the original
interval (figure a)

• Recursive application of
fractal chaining (figure b)

Chain overlapping 2 notes

• Looking at the last
interval of the sequence

• Search the matrix for a
match

• => adding a new note to
the sequence

• with or whithout history
check: is a new pitch-
class added to the
sequence or not?

Chain overlapping 1 note

• First taking a random cell
from the matrix

• Let one note overlap
• Check or not whether new

pitch classes are added or
not, in which case the
program tries to fit a
different cell from the
database

Combining both algorithms

Chain without overlap

• take a random first
interval from the matrix

• Use the resulting pitch-
class as the basis for
another cell chosen from
the matrix

• No history check

Development of a Composer’s
Sketchbook

1. Computer Assisted Composition
2. Algorithms

3. Implementation

Serialize it
84
CCompStaff 72 72 720 107 7 2 72 107

CCompClef 72 72 0 0 1 3

CCompNote 102 72 0 0 1 7 76

CCompNote 123 72 0 0 1 7 72

CCompNote 144 72 0 0 1 7 77

CCompNote 165 72 0 0 1 7 82

CCompNote 186 72 0 0 1 7 81

the database
///
// Name: MakeMelody.h
// Purpose: Class for calculating melodies
// Author: Georg Boenn
// Modified by: Georg Boenn
// Created: 07/01/05
// Modified: Sun 17 Apr 2005 04:59:26 PM BST
// Copyright: (c) Georg Boenn
// Licence: GNU General Public License v2
///

#ifndef __MakeMelody_h__
#define __MakeMelody_h__

#include "LList.h"
#include "DList.h"
#include "CBuffer.h"
#include "Random.h"

const int CELLDB_MAX = 122;

const int b21[3] = {62,60,63};
const int b22[3] = {61,62,60};
const int b23[3] = {63,62,64};
const int b24[3] = {59,61,60};
const int b25[3] = {63,61,62};
const int b26[3] = {60,63,61};
const int b27[3] = {60,64,61};
const int b28[3] = {63,60,64};
const int n21[3] = {60,64,62};
const int n22[3] = {60,63,62};
...

MakeMelody::MakeMelody()
{

bptr[0] = new Buffer(b21,3);
bptr[1] = new Buffer(b22,3);
bptr[2] = new Buffer(b23,3);
bptr[3] = new Buffer(b24,3);
bptr[4] = new Buffer(b25,3);
bptr[5] = new Buffer(b26,3);
bptr[6] = new Buffer(b27,3);
bptr[7] = new Buffer(b28,3);

bptr[8] = new Buffer(n21,3);
bptr[9] = new Buffer(n22,3);
bptr[10] = new Buffer(n23,3);
bptr[11] = new Buffer(n24,3);
bptr[12] = new Buffer(n25,3);
bptr[13] = new Buffer(n26,3);
bptr[14] = new Buffer(n27,3);
bptr[15] = new Buffer(n28,3);

bptr[16] = new Buffer(b31,3);
bptr[17] = new Buffer(b32,3);
bptr[18] = new Buffer(b33,3);
bptr[19] = new Buffer(b34,3); // etcetera

Development of a Composer’s
Sketchbook

1. Computer Assisted Composition
2. Algorithms

3. Implementation
4. Future?

Future?

• MIDI and RealTime Audio output on all
platforms

• Rhythm classes
• Context-free grammar editor
• Polyphony
• Chord database
• Advanced Notation capabilities

References

• www.wxwindows.org
• www.mididesign.com
• www.boenn.de/composer

