Q: A Functional Programming Language for
Multimedia Applications

Albert Graf

Dept. of Music-Informatics

GUTENRERG, ..

unipet
SIA®
matnz

Q: A Functional Programming Language = GUTENBERG. ;.

Quick overview

* What?
* Why?
* The Library

 MIDI, Audio and OSC
Interfaces

* Demo
e (Conclusion

Q: A Functional Programming Language GUTENRERG

VWhat?

* A functional programming
language based on term
rewriting.

* Programs are collections of

algebraic equations.

* Executing a
program means to

gcdiv X Y

gcdiv Y X 1f Y>X;
gcdiv Y (X mod Y) 1f Y>0;
X otherwise;

evaluate an gsort [] _
4 gsort [X|Xs] =
expression. %] 4+ geort

[17
gsort (filter (<X) Xs) ++
(filter (>=X) Xs);

Q: A Functional Programming Language = GUTENBERG. ;.

Why*?

* Started as a (master) research project on pattern
matching techniques for term rewriting.

* |dea was to turn this into a simple, practical
programming language (ca. 1991).

* Turned out quite different from both ML and
Haskell. Simpler. Interpreted. Dynamic typing.
= “functional scripting language”

* Multimedia facilities in other modern-style FPLs

were missing when | needed them, decided to do
my own.

Q: A Functional Programming Language = GUTENBERG. ;.

The Library

Multimedia:
audio, MIDI, OSC, C/C++
OpenGL, Xine
Standard Library: ?
lists, streams, 7 Q-SWIG
containers, < Q Interpreter
lambda calculus, ... aScientific
/ i programming:
Octave, OpenDX,
GUI+Graphics: POSIX: I/O, Graph library
Tcl/Tk, GG, PTOCESSES, v
Freetype, threads, sockets, yyeh: Apache module,
ImageMagick Tegexps, ... XML+XSLT, Curl,
ODBC

Q: A Functional Programming Language = GUTENBERG. ;.

MIDI Interface

* based on Grame's MidiShare

* dynamic routing and realtime processing of MIDI
messages

e algebraic MidiMsg type; sequences are
represented as lists

* standard MIDI file support

Q: A Functional Programming Language = GUTENBERG. ;.

MIDI Interface

import midi;

/* register a MidiShare client and establish I/0 connections */
def REF = midi open "Transpose",
I0 = midi client ref "MidiShare/ALSA Bridge",
= midi connect IO REF || midi connect REF IO;
/* transpose note on and off messages, leave other messages unchanged */
transp K (note on CH N V)
= note on CH (N+K) V;
transp K (note off CH N V)
= note off CH (N+K) V;
transp K MSG = MSG otherwise;

/* the following loop repeatedly reads a message, transposes it and
immediately outputs the transformed message */
transp loop K = midi send REF 0 (transp K MSG) || transp loop K
where (, , ,MSG) = midi get REF;

Q: A Functional Programming Language = GUTENBERG. ;.

Audio Interface

e audio module: PortAudio interface
e sndfile module: Libsndfile interface

* wave module: simple wave generation and

manipulation operations, wave drawing, interface
to libsamplerate and FFTW

Q: A Functional Programming Language = GUTENBERG. ;.

OSC Interface

— implements Berkeley's Open Sound Control
protocol

— all standard OSC features supported, including
nested bundles

— UDP support
— special support for SuperCollider

— current version is written in Q; might use liblo in the
future

Q: A Functional Programming Language = GUTENBERG. ;.

OSC Interface

/* note offs: set the gate of the synth to 0 and put it at the end of the

queue */
loop P Q (,note on N 0)
= n set I ("gate",0) || loop P Q midiin
where (I,) = P!N, P = delete P N, Q = append Q I;

= loop P O midiin otherwise;
loop P QO (T,note off CH N)
= loop P Q (T,note on CH N 0);

/* note ons: turn note off if already sounding, then get a new voice from
the queue and set its gate to 1 */
loop P QO (T,note on CH N V)
= n set I ("gate",0) || loop P Q (T,note on CH N V)
where (I,) = PI!N, P = delete P N, Q = append Q I;
= n set I ("freq",FREQ,"gain",Vv/127,"gate",1) ||
loop P Q midiin
where [I|Q] = Q, FREQ = freg N,
P = insert P (N, (I,FREQ)):;

Q: A Functional Programming Language

i

Demo

SoloFlute

Raptor #1 - SoloFlute

[2.2,2.2]
SoloFlutes

* | # | Clients
MidiShare
QMidicC

|Inputs
MidiShare
QMidiCC

* | # Outputs

0 MidiShare

1 QMidiCC

2 MidiShare/ALSA
3

0

1
| | P
HEE

0
1
2
3
-«

,,"‘“

Connecting input "EMU10K1 MPU-401 (UART) - Rawmidi 0" (64:0).
Connecting output "EMU10K1 MPU-401 (UART) - Rawmidi 0" (64:0).
MidiShare ALSA driver anchored on "MidiShare/ALSA Bridge" is runnir
Type 'q' to quit.

Connect:ng QM:dlCC (#1) to QMlle!ayer (#3).

A_Bei o C\idiDlas o

i & QSC5ynth _Ealx

Synth Definitions

home/ag/Desktop/Beispiele/sc/synths.sc

|#| (@l 2] [7](c]

asem0d|

I|* ’ Voices: [16

Port: |Any 5 Chan: W

.I|“||I.]|.LI.IIII||I| Al

! “]]llui. IIlI'Jlil.
I ||||||-|I||||'||'|l'| '|I'||r|'1|"'r|

LT Jrat T

AL T gL
||1|||'|

IuI

|r|||||

.i.l|||||.|.|.||H|I.|I.JJI|I||||||u I||_
l||||r|'|| o

"l'l] TR T A T T

trols
5l |Freq Range: [OHz

1n:

: [2500Hz 3 Mag:[x5 ¢ Rate:[44100 %
0.0+ Out:| 0.8% Pan:| 0.0+ Rec:| 1.0 Buf: [4096 =

SC_JackDriver:
SC_JackDriver:
SC_JackDriver:
SC_JackDriver:
SC_JackDriver:
SC_JackDriver:
SuperCollider 3

Starting scsynth
Using Altivec: no

[« —— — T

»

jack name is SuperCollider

connected alsa_pcm:capture_1 to SuperCollider:in_1
connected alsa_pcm:capture_2 to SuperCollider:in_2
max output latency 0.021333

connected SuperCollider:out_1 to alsa_pcm:playback_1
connected SuperCollider:out_2 to alsa_pcm:playback_2
server ready..

/|!m stop | @ Rec | X Exit

x|

| cPu13% | 0:39

p Start ||l Stop |

® setup ||® Restart |/ x Quit

Q: A Functional Programming Language GUTENRERG

Conclusion

* (Q: a modern-style functional programming
language based on term rewriting.

* Already good support for multimedia and computer
music applications.

* Future work: library support (Jack, LADSPA, DSSI,
...), high-level interfaces.

* |t's free! (GPL)
* More info: g-lang.sf.net

THE END

