
Q: A Functional Programming Language
Q: A Functional Programming Language for
Multimedia Applications

Albert Gräf

Dept. of Music-Informatics

Q: A Functional Programming Language

Quick overview

● What?
● Why?
● The Library
● MIDI, Audio and OSC

Interfaces
● Demo
● Conclusion

Q: A Functional Programming Language

What?

● A functional programming
language based on term
rewriting.

● Programs are collections of
algebraic equations.

● Executing a
program means to
evaluate an
expression.

sqr X = X*X;

sqr 2+sqr (2+3) 2*2+sqr (2+3)
 4+sqr (2+3) 4+sqr 5
 4+5*5 4+25 29

gcdiv X Y = gcdiv Y X if Y>X;
 = gcdiv Y (X mod Y) if Y>0;
 = X otherwise;

qsort [] = [];
qsort [X|Xs] = qsort (filter (<X) Xs) ++
 [X] ++ qsort (filter (>=X) Xs);

Q: A Functional Programming Language

Why?
● Started as a (master) research project on pattern

matching techniques for term rewriting.
● Idea was to turn this into a simple, practical

programming language (ca. 1991).
● Turned out quite different from both ML and

Haskell. Simpler. Interpreted. Dynamic typing.
 “functional scripting language”

● Multimedia facilities in other modern-style FPLs
were missing when I needed them, decided to do
my own.

Q: A Functional Programming Language

The Library

Q-SWIG

Q Interpreter

Standard Library:
lists, streams,
containers,
lambda calculus, ...

POSIX: I/O,
processes,
threads, sockets,
regexps, ...

C/C++

GUI+Graphics:
Tcl/Tk, GGI,
Freetype,
ImageMagick

Multimedia:
audio, MIDI, OSC,
OpenGL, Xine

Web: Apache module,
XML+XSLT, Curl,
ODBC

Scientific
programming:
Octave, OpenDX,
Graph library

Q: A Functional Programming Language

MIDI Interface

● based on Grame's MidiShare
● dynamic routing and realtime processing of MIDI

messages
● algebraic MidiMsg type; sequences are

represented as lists
● standard MIDI file support

Q: A Functional Programming Language

MIDI Interface
import midi;

/* register a MidiShare client and establish I/O connections */
def REF = midi_open "Transpose",
 IO = midi_client_ref "MidiShare/ALSA Bridge",
 _ = midi_connect IO REF || midi_connect REF IO;

/* transpose note on and off messages, leave other messages unchanged */
transp K (note_on CH N V)
 = note_on CH (N+K) V;
transp K (note_off CH N V)
 = note_off CH (N+K) V;
transp K MSG = MSG otherwise;

/* the following loop repeatedly reads a message, transposes it and
 immediately outputs the transformed message */
transp_loop K = midi_send REF 0 (transp K MSG) || transp_loop K
 where (_,_,_,MSG) = midi_get REF;

Q: A Functional Programming Language

Audio Interface

● audio module: PortAudio interface
● sndfile module: Libsndfile interface
● wave module: simple wave generation and

manipulation operations, wave drawing, interface
to libsamplerate and FFTW

Q: A Functional Programming Language

OSC Interface

– implements Berkeley's Open Sound Control
protocol

– all standard OSC features supported, including
nested bundles

– UDP support
– special support for SuperCollider
– current version is written in Q; might use liblo in the

future

Q: A Functional Programming Language

OSC Interface
/* note offs: set the gate of the synth to 0 and put it at the end of the
 queue */
loop P Q (_,note_on _ N 0)
 = n_set I ("gate",0) || loop P Q midiin
 where (I,_) = P!N, P = delete P N, Q = append Q I;
 = loop P Q midiin otherwise;
loop P Q (T,note_off CH N _)
 = loop P Q (T,note_on CH N 0);

/* note ons: turn note off if already sounding, then get a new voice from
 the queue and set its gate to 1 */
loop P Q (T,note_on CH N V)
 = n_set I ("gate",0) || loop P Q (T,note_on CH N V)
 where (I,_) = P!N, P = delete P N, Q = append Q I;
 = n_set I ("freq",FREQ,"gain",V/127,"gate",1) ||
 loop P Q midiin
 where [I|Q] = Q, FREQ = freq N,
 P = insert P (N,(I,FREQ));

Q: A Functional Programming Language

Demo

Q: A Functional Programming Language

Conclusion

● Q: a modern-style functional programming
language based on term rewriting.

● Already good support for multimedia and computer
music applications.

● Future work: library support (Jack, LADSPA, DSSI,
...), high-level interfaces.

● It's free! (GPL)
● More info: q-lang.sf.net

