
This document was written as accompanying material to a presentation at the 3rd International Linux Audio Conference 2005 in
Karlsruhe, Germany.

Music Synthesis Under Linux

Tim Janik
University of Hamburg, Germany

timj@gtk.org

ABSTRACT

While there is lots of desktop software emerging for Linux which is being used productively by many end-
users, this is not the case as far as music software is concerned. Most commercial and non-commercial music is
produced either without software or by using proprietary software products. With BEAST, an attempt is made
to improve the situation for music synthesis. Since most everything that is nowadays possible with hardware
synthesizers can also be processed by stock PC hardware, it's merely a matter of a suitable implementation to
enable professional music production based on free software. As a result, the development of BEAST focuses
on multiple design goals. High quality demands are made on the mathematical characteristics of the synthesis,
signals are processed on a 32-bit-basis throughout the program and execution of the synthesis core is fully real-
time capable. Furthermore, the synthesis architecture allows scalability across multiple processors to process
synthesis networks. Other major design goals are interoperability, so the synthesis core can be used by third-
party applications, and language flexibility, so all core functionality can be controlled from script languages
like scheme. In addition, the design of all components accounts for an intense focus on the graphical user
interface to allow simple and if possible intuitive operation of the program.

Keywords

Modular Synthesis, MIDI Sequencer, Asynchronous
Parallel Processing, Pattern Editor.

1 BEAST/BSE - An Overview

BEAST is a graphical front-end to BSE which is
a synthesis and sequencing engine in a separate
shared library. Both are being released under the
GPL and are being developed as free software for
the best part of a decade. Since the first public
release, some parts have been rolled out and
reintegrated into other Projects, for instance the
BSE Object system which became GObject in
Glib. The programming interface of BSE is
wrapped up by a glue layer, which allows for
various language bindings. Currently a C binding
exists which is used by BEAST. A C++ binding
exists which is used to implement plugins for BSE
and there also is a Scheme binding which is used
for application scripting in BEAST or scripting
BSE through the scheme shell bsesh.

BEAST allows for flexible sound synthesis and
song composition based on utilization of synthesis
instruments and audio samples. To store songs and
synthesis settings, a special BSE specific hybrid
text/binary file format is used which allows for

seamless integration of audio samples, synthesis
instruments and sequencing information.

Since the 0.5 development branch, BEAST
offers a zoomable time domain display of audio
samples with preview abilities. Several audio file
formats are supported, in particular MP3, WAV,
AIFF, Ogg/Vorbis and BseWave which is a hybrid
text/binary file format used to store multi samples
with loop and other accompanying information. A
utility for creation, compression and editing of
BseWave files is released with version 0.6.5 of
BEAST. Portions of audio files are loaded into
memory on demand and are decoded on the fly

Wave View Dialog

LAC2005
137

even for intense compression formats like
Ogg/Vorbis or MP3. This allows for processing of
very large audio files like 80 megabytes of MP3
data which roughly relates to 600 megabytes of
decoded wave data or one hour of audio material.
To save decoding processing power, especially for
looped samples, decoded audio data is cached up
to a couple of megabytes, employing a sensible
caching algorithm that prefers trashing of easily
decoded sample data (AIFF or WAV) over
trashing processing intense data (Ogg/Vorbis).

The synthesis core runs asynchronously and
performs audio calculations in 32-bit floating point
arithmetic. The architecture is designed to support
distribution of synthesis module calculations
across multiple processors, in case multiple
processors are available and the operating system
supports process binding. In principle the sampling
rate is freely adjustable, but it is in practice limited
by operating system IO capabilities. The generated
audio output can be recorded into a separate wave
file.

The graphical user interface of BEAST sports
concurrent editing of multiple audio projects, and
unlimited undo/redo functionality for all editing
functions. To easily give audio setups a try and for
interactive alterations of synthesis setups, real-time
MIDI events are processed. This allows utilization
of BEAST as a ordinary MIDI synthesizer.

Since the complete programming interface of the
synthesis core is available through a scheme shell,
BEAST allows registration of scheme scripts at
startup to extend its functionality and to automate
complex editing tasks.

2 Song Composition

Songs consist of individual tracks with
instruments assigned to them, and each track may
contain multiple parts. A part defines the notes that
are to be played for a specific time period.

The type of instrument assigned to a track is
either a synthesis instrument, or an audio sample.
Synthesis instruments are separate entities within
the song's audio project and as such need to be
constructed or loaded before use. In current
versions, to enable sound compression or echo
effects, post processing of audio data generated by
a track or song is supported by assigning
designated post processing synthesis meshes to
them which simply act as ordinary audio filters,
modifying the input signal before output.

The post processing mechanism is currently
being reworked, to integrate with the audio mixer
framework that started shipping in recent versions
of the 0.6 development branch. In the new audio
mixer, audio busses can freely be created and
connected, so volume metering or adjustment and
effects processing is possible for arbitrary
combinations of tracks and channels. Other
standard features like muting or solo playback of
busses are supported as well.

To allow editing of parts, a zoomable piano roll
editor is supplied. Notes can be positioned by
means of drag-and-drop in a two dimensional
piano key versus time grid arrangement. This
enables variation of note lengths and pitch through
modification of note placement and graphical
length. The piano keys also allow preview of
specific notes by clicking on or dragging about.
Also many other standard editing features are
available via context menu or the toolbar, for
instance note and event selection, cutting, pasting,
insertion, quantization and script extensions. MIDI
events other than notes, such as velocity or volume
events can also be edited in an event editor region
next to the piano roll editor. Newer versions of
BEAST even sport an experimental pattern editor
mode, which resembles well-known sound tracker
interfaces. The exact integration of pattern mode
editing with MIDI parts is still being worked out
though.

Similar to notes within parts, the individual parts
are arranged within tracks via drag-and-drop in the
zoomable track view. Tracks also allow links to
parts so a part can be reused multiple times within
multiple tracks or a single track. The track view
also offers editing abilities to select individual
tracks to be processed by the sequencer,
specification of the number of synthesis voices to
be reserved and adding comments.

Piano Roll and MIDI Event Dialog

LAC2005
138

3 Synthesis Characteristics

The synthesis facilities of the standard 0.6
development branch of the BEAST distribution,
roughly equates the facilities of a simple modular
synthesizer. However the quality and number of
the supplied synthesis modules is constantly being
improved.

Various synthesis modules are available.
Amongst the audio sources are an Audio
Oscillator, a Wave Oscillator, Noise, Organ and a
Guitar Strings module. Routing functionality is
implemented by modules like Mixer, Amplifier,
ADSR-Envelope, Adder, Summation, Multiplier
and Mini Sequencer. Various effect modules are
also supplied, many based on recursive filters, i.e.
Distortion, Reverb, Resonance, Chorus, Echos and
the list goes on. Finally, a set of connection or IO
modules is supplied for instrument input and
output, MIDI input or synthesis mesh
interconnection.

Apart from the synthesis modules shipped with
the standard distribution, BSE also supports
execution of LADSPA modules. Unfortunately,
limitations in the LADSPA parameter system
hinder seamless integration of LADSPA modules
into the graphical user interface.

In general, the modules are implemented
aliasing free, and highly speed optimized to allow
real-time applicability. Per module, multiple
properties (phase in an oscillator, resonance
frequency of filters, etc...) are exported and can be
edited through the user interface to alter synthesis
functionality. A large part of mutable module
parameters is exported through separate input or
output channels, to allow for maximum flexibility
in the construction of synthesis meshes.

BEAST generally does not differentiate between
audio and control signals. Rather, the control or

audio character of a signal is determined by the
way of utilization through the user.

The graphical user interface provides for simple
access to the construction and editing functionality
of synthesis networks. Modules can be selected
from a palette or context menu, and are freely
placeable on a zoomable canvas. They are then
connected at input and output ports via click-and-
drag of connection lines. For each module, an
information dialog is available and separate
dialogs are available to edit module specific
properties. Both dialogs are listed in the module
context menu. Properties are grouped by functional
similarities within editing dialogs, and many input
fields support multiple editing metaphors, like
fader bars and numeric text fields. All property and
connection editing functions integrate with the
project hosted undo/redo mechanism, so no editing
mistakes committed can be finally destructive.

3.1 Voice-Allocation

The maximum number of voices for the
playback of songs and for MIDI controlled
synthesis can be specified through the graphical
user interface. Increasing this number does not
necessarily result in an increase in processor load,
it just sets an upper limit within which polyphonic
synthesis is carried out. To reduce processor load
most effectively, the actual voice allocation is
adjusted dynamically during playback time. This is
made possible by running the synthesis core
asynchronously to the rest of the application, and
by preparing a processing plan which allows for
concurrent processing of voice synthesis modules.
This plan takes module dependencies into account
which allows distribution of synthesis module
processing tasks across multiple processors.
Execution of individual processing branches of
this plan can be controlled with sample
granularity. This allows suspension of module

LAC2005
139

branches from inactive voices. The fine grained
control of processing activation which avoids
block quantization of note onsets allows for
precise realization of timing specifications
provided by songs.

4 User experience and documentation

Like with most audio and synthesis applications,
BEAST comes with a certain learning curve for
the user to overcome. However, prior use of
similar sequencing or synthesis applications may
significantly contribute to reduction of this initial
effort. The ever growing number of language
translations can also be of significant help here,
especially for novice users. BEAST does not
currently come with a comprehensive manual, but
it does provide a “Quick Start” guide which
illustrates the elementary editing functions, and the
user interface is equipped with tooltips and other
informative elements explaining or exemplifying
the respective functionality. Beyond that,
development documentation for the programming
interfaces, design documents, an FAQ, Unix
manual pages and an online “Help Desk” for
individual user problems are provided, accessible
through the “Help” menu.

5 Future Plans

Although BEAST already provides solid
functionality to compose songs and work with
audio projects, there is still a long list of todo items
for future development.

Like with any free software project with an open
development process, we appreciate contributions
and constructive criticism, so some of the todo
highlights are outlined here:
● Extend the set of standard instruments

provided.
● Implement more advanced effect and distortion

modules.
● Adding a simple GUI editor for synthesis mesh

skins.
● Implementing new sound drivers, e.g.

interfacing with Jack.
● New instrument types are currently being

worked on such as GUS Patches.
● Support for internal resampling is currently in

planning stage.
● Extending language bindings and

interoperability.

6 Acknowledgements

Our thanks go to the long list of people who
have contributed to the BEAST project over the

years.

7 Internet Addresses

BEAST home page:
http://beast.gtk.org

Contacts, mailing list links, IRC channel:
http://beast.gtk.org/contact.html

Open project discussion forums:
http://beast.gtk.org/wiki:BeastBse

8 Abbreviations and References

ADSR – Attack-Decay-Sustain-Release, envelope
phases for volume shaping.

BEAST - Bedevilled Audio System,
http://beast.gtk.org.

BSE - Bedevilled Sound Engine.
C++, C - Programming languages,

http://www.research.att.com/~bs/C++.html.
FAQ – Frequently Asked Questions.
GLib - Library of useful routines for C

programming, http://www.gtk.org.
GObject - GLib object system library.
GPL - GNU General Public License,

http://www.gnu.org/licenses/gpl.html.
GUI – Graphical User Interface.
GUS Patch – Gravis Ultrasound Patch audio file

format.
IRC – Internet Relay Chat.
Jack - Jack Audio Connection Kit,

http://jackit.sourceforge.net.
LADSPA - Linux Audio Developer's Simple

Plugin API, http://www.ladspa.org.
MIDI - Musical Instruments Digital Interface,

http://www.midi.org/about-
midi/specshome.shtml.

MP3, WAV, AIFF - sound file formats,
http://beast.gtk.org/links-related.html.

Ogg/Vorbis - open audio codec,
http://www.xiph.org/ogg/vorbis.

LAC2005
140

