Recording all Output from a Student Radio Station

John ffitch
Department of Computer Science
University of Bath
Bath BA2 TAY,

UK,
jpff@cs.bath.ac.uk

Abstract

Legal requirements for small radio stations in the
UK mean, inter alia, that the student station at
Bath (University Radio Bath or URB) must retain
50 days of the station’s output. In addition, as it
has recently become easier to transfer data using dis-
posable media, and general technical savvy amongst
presenters has improved, there is now some interest
in producing personal archives of radio shows. Be-
cause existing techniques, using audio videos, were
inadequate for this task, a modern, reliable system
which would allow the simple extraction of any au-
dio was needed. Reality dictated that the solution
had to be cheap. We describe the simple Linux so-
lution implemented, including the design, sizing and
some surprising aspects.

Keywords

Audio archive, Audio logging, Radio Station, Por-
taudio.

1 Introduction

The University of Bath Student’s Union has
been running a radio station(URB, 2004) for
many years, and it has a respectable tradition
of quality, regularly winning prizes for its pro-
grammes(SRA, 2004). Unfortunately the im-
proved requirements for logging of output from
the station coincided with the liquidation of a
major sponsor and hence a significant reduction
in the station’s income, so purchasing a com-
mercial logging device was not an option.

Following a chance conversation the authors
decided that the task was not difficult, and a
software solution should be possible. This pa-
per describes the system we planned and how it
turned out. It should be borne in mind that dur-
ing development, cost was the overriding factor,
in particular influencing hardware choices.

2 The Problem

The critical paragraph of the regulations on Ra-
dio Restricted Service Licences, which control

Tom Natt
Chief Engineer, URB
University of Bath
Bath BA2 TAY,
UK,
maltwn@bath.ac.uk

such activities as student broadcasting in the
UK read

You are required to make
a recording of all broadcast
output, including advertisements
and sustaining services. You
must retain these recordings
(‘logging tapes’) for a period of 42
days after broadcast, and make
them readily available to us or to
any other body authorised to deal
with complaints about broadcast
programmes. Failure to provide
logging tapes on request will be
treated seriously, and may result
in a sanction being imposed.

where the bold is in the original (OffComm,
2003). In the previous state the logging was
undertaken using a video player and a pile of
video tapes. These tapes were cycled manually
so there was a single continuous recording of all
output. This system suffered from the following
problems.

The quality was largely unknown. In at least
the last 3 years no one has actually listening to
anything recorded there; indeed it is not known
if it actually works! The system required some-
one to physically change the tape. Hence, there
were large gaps in logging where people simply
forgot to do this, which would now expose the
station to legal problems.

Assuming that the tapes actually worked, re-
covering audio would be a painstaking process
requiring copying it from the tapes to some-
where else before it could be manipulated in
any way. Hence this was only really useful for
the legal purposes, rather than for people tak-
ing home copies of their shows. Also, as far as
could be determined, whilst recovering audio,
the logger itself had to be taken offline.

Put simply, the system was out of date. Over
the last two years there has been a move to mod-

LAC2005

95

ernise URB by shifting to computers where pos-
sible, so it seemed logical to log audio in such
a way that it would be easy to transmit onto
the network, and be secure regarding the regu-
lations.

3 Requirements

The basic requirement for the system is that
it should run reliably for many days, or even
years, with little or no manual intervention. It
should log all audio output from the radio sta-
tion, and maintain at least 50 days of material.
Secondary requirements include the ability to
recover any particular section of audio by time
(and by a non-technical user). Any extracted
audio is for archiving or rebroadcast so it must
be of sufficient quality to serve this purpose.
There is another, non functional, requirement,
that it should cost as close to zero as possible!

Quick calculations show that if we were to
record at CD quality (44.1KHz, 16bit stereo)
then we would need 44100 x 2 x 2 bytes a sec-
ond, or 44100 x 2 X 2 x 60 x 24 = 14Gb each day,
which translates to over 700Gb in a 50 day pe-
riod. While disks are much cheaper than in ear-
lier times, this is significantly beyond our bud-
get. Clearly the sound needs to be compressed,
and lossy compression beckons. This reduces
the audio quality but, depending on compres-
sion rates, not so much that it violates our re-
quirements.

We sized the disk requirements on a conserva-
tive assumption of 1:8 compression, which sug-
gests at least an 80Gb disk. Quick experiments
suggested about a 400MHz Intel processor; the
decision to use Linux was axiomatic. Given suf-
ficient resource, a system to record DJ training
sessions and demo tapes was suggested as a sim-
ple extension.

We assumed software would be custom-
written C, supported by shell scripts, cron jobs
and the like. A simple user recovery system
from a web interface would be attractive to the
non-technical user, and it seemed that PERL
would be a natural base for this.

There are commercial logging computers, but
the simple cost equation rules them out.

4 Hardware

A search for suitable hardware allowed the cre-
ation of a 550MHz Celeron machine with 128 Mb
of memory, ethernet, and two old SoundBlasters
retrieved from a discard pile. SuSE9.1(Novell,
2004) was installed with borrowed screen, key-

board and mouse. The only cash expenditure
was a new 120Gb disk; we decided that 80Gb
was a little too close to the edge and the addi-
tional space would allow a little leeway for any
extensions, such as the DJ training.

There were two unfortunate incidents with
the hardware; the disk was faulty and had
to be replaced, and following the detection of
large amounts of smoke coming from the moth-
erboard we had to replace the main system:;
the best we could find was a 433MHz Celeron
system. Fortunately the disk, soundcards and
other equipment were not damaged and in the
process of acquiring a new motherboard and
processor combination we were lucky enough
to find another stick of RAM. Most important,
what we lost was time for development and test-
ing as we needed to hit the deadline for going
live at the beginning of the 2004 academic year.

| Hardware | Features ‘
433MHz Celeron slower than our design
120Gb disk New!

2 x SoundBlaster 16
256Mb main memory
10 Mbit ether

old but working

Table 1: Summary of Hardware Base

5 Implementation

The main program is that the suite needs to
perform two main tasks: read a continuous au-
dio stream and write compressed audio to the
disk. The reading of the audio feed must not
be paused or otherwise lose a sample. The cur-
rent design was derived from a number of alter-
native attempts. We use a threaded program,
with a number of threads each performing a
small task, coordinated by a main loop. A con-
siderable simplification was achieved by using
PortAudio(Por, 2004) to read the input, using
a call-back mechanism. We shamelessly canni-
balised the test program patest_record writ-
ten by Phil Burk to transfer the audio into an
array in large sections. The main program then
writes the raw audio in 30 second sections onto
the disk. It works on a basic 5 period cycle,
with specific tasks started on periods 0, 3 and
4.

On 0 a new file is used to write the raw audio,
and a message is written to the syslog to indi-
cate the time at which the file starts. On period
3 a subthread is signalled to start the compres-

LAC2005

96

sion of a raw audio file, and on period 4 the next
raw audio file is named and created. By sharing
out the tasks we avoid bursts of activity which
could lead to audio over-runs. This is shown in
figure 1.

The compression is actually performed by a
lower priority sub task which is spawned by a
call to system. There is no time critical aspect
of the compression as long as it averages to com-
pressing faster than the realtime input. Any lo-
cal load on the machine may lead to local varia-
tion but eventually it must catch up. There is a
dilemma in the compression phase. The obvious
format is OGG, for which free unencumbered
software exists, but the student community is
more used to MP3 format. We have exper-
imented with oggenc(ogg, 2004), which takes
80% of elapsed time on our hardware and com-
presses in a ratio of 1:10, and notlame(Not,
2004), where compression is 1:11 and 74% of
elapsed time. Our sources have both methods
built in with conditional compilation.

We have varied the period, and have decided
on a minute, so each audio file represents five
minutes of the station’s output; this is a good
compromise between overheads and ease of re-
covery.

The result of this program is a collection of 5
minute compressed audio files. Every day, just
after midnight, these files are moved to a direc-
tory named after the day, and renamed to in-
clude the time of the start of the interval of time
when the recording started. This is achieved
with a small C program which reads the syslog
files to get the times. This program could have
been written in PERL but one of us is very fa-
miliar with C. A snapshot of part of the logging
directory is shown in figure 2, where compressed
audio, raw PCM files, unused PCM files and a
compression log can be seen.

The decision to rename actual files was taken
to facilitate convenience during soak testing.
We were running the system over this time as
if it were live, and hence were using it to ex-
tract logs when they were requested by presen-
ters. Cross-referencing files with the system log
was a tedious task so an automatic renaming
seemed the obvious choice. Using this opportu-
nity to refile the logs in directories correspond-
ing to the date of logging also assisted greatly in
retrieval. A more long-term consideration was
that renamed files would be easier to extract
via a web interface and hence this work could
probably be used in the final version also.

e Minuie O Switch to next logging

file

Create new file

L 1 Collect data from sound card

every second

Stant compression
Process

Figure 1: Overview of Software Cycle

6 Experience

The program has now been running for a signif-
icant time. Two problems with the design have
emerged.

The first was the change to winter time which
happened a few days after going live. Our logs,
and hence times, where based on local time as
that seemed to be closest to what the users
would require. But with the clock being put
backwards, times repeat. Clearly we need to
maintain both times in the logs, and append
the time zone to the ultimate file name, or some
similar solution. But how did we manage this
shift backwards without loss of data? The an-
swer is in the second problem.

We are capturing the raw station output in
44.1KHz 16bit stereo. Every five minutes a new
file is started. Actually we are not starting files
by time but by sample count (13230000 frames).
As was predicted, the sound card was not sam-
pling at exactly CD rate, but faster, and as a
result we are drifting by 19 seconds a day. In it-
self this is not a problem, and indeed rescued the
possible data loss from the introduction of win-
ter time, but it is less convenient for the student
DJs who want a copy of their program. The
suggestion is that the files should be aligned on
five minute boundaries by the clock. This en-
tails monitoring the clock to decide on a change
of file, which would be a considerable departure
from the simplicity of design. Exactness is not
important, but we would like to be less than
a minute adrift. Our revised code, not yet in
service, makes the switch of files after reading
the clock, and additional care is needed to avoid
clock drift.

LAC2005

97

-rw-r—--r-- 1 root root 4801096 Mar
-rw-r—--r—- 1 root root 4801096 Mar
-rwWw-r—-r--— 1 root root 4801096 Mar
-rw-r—--r-- 1 root root 4801096 Mar
-rw-r—--r—- 1 root root 4801096 Mar
“rwWw-r—--r--— 1 root root 4801096 Mar
-rw-r—--r--— 1 root root 4801096 Mar
-rw-r—--r-- 1 root root 4801096 Mar
-rw-r—--r—- 1 root root 4801096 Mar
-TrW-r—--r--— 1 root root 52920000 Mar
-rw-r—-r--— 1 root root 4801096 Mar
-rw-r—--r—- 1 root root 0 Mar
-rw-r—--r—- 1 root root 42332160 Mar
-rw-r—--r--— 1 root root 0 Mar
-rw-r—--r—-- 1 root root 3145728 Mar

NNNNANNNANNNNNNNA

10:
11:04
11:09
11:14
11:19
11:24
11:29
11:34
11:39
11:44
11:44
11:47
11:48
11:48
11:48

59 Arc0041022
Arc0041023
Arc0041024
Arc0041025
Arc0041026
Arc0041027
Arc0041028
Arc0041029
Arc0041030
Arc0041032
Arc0041031
log5Pwl4o
Arc0041033
Arc0041034
Arc0041032

.mp3
.mp3
.mp3
.mp3
.mp3
.mp3
.mp3
.mp3
.mp3

.mp3

.mp3

Figure 2: Part of Directory for Running System

It was this clock drift, which can be seen
in figure 3, that saved the situation when we
changed from summer time to winter time. If
we had implemented the time alignment method
then the file names would have repeated for the
one hour overlap (lam to 2am is repeated in the
UK time scheme), but as the soundcard had
read faster, the second hour was fortuitously
aligned to a different second, and so we could
rescue the system manually.

The zone change from winter to summer in-
volves the non-existence of an hour and so raises
no problems. Before next autumn we need to
have deployed a revised system. It has been
suggested that using the Linux linking mecha-
nisms we could maintain all logging in universal
time, and create separate directories for users to
view.

There was one further problem. When the
syslog file got large the usual logrotate mecha-
nism started a new file. But as our renaming
system reads the syslog, it subsequently missed
transfer and rename of some output. This was
fixed by hand intervention, but at present we do
not have a good solution to this; nasty solutions
do occur to us though!

Another minor problem encountered during
initial testing was with the hardware: it seems
under Linux older versions of the SoundBlaster
chipset could not handle both recording from
an input stream and outputting one simultane-
ously. The output stream took priority so unless
we specifically muted the output channels on
the card, no sound was captured. This is only
mentioned here in case an attempt is made to

duplicate this work, and so to avoid the hours
of frustration endured during our initial tests.
We expect that similar minor problems will ap-
pear later as we develop the system, but the
main data collection cycle seems most satisfac-
torily robust. Most importantly, despite being
forced to downgrade our hardware, the system
performs within its new limitations without loss
of data during compression phases — even dur-
ing periods of additional load from users (i.e.
when logs are being extracted). There is suffi-
cient slack for us to consider adding additional
services.

7 Conclusions

Tests have demonstrated that our original aim,
of a cheap data logging system, has been eas-
ily achieved — the whole system cost only £60
in new purchased materials. What is also clear
is that the whole structure of the Linux and
Open Source movements made this much more
satisfactory than we feared. The efficiency of
Linux over, say, Windows meant that we could
use what was in effect cast-off hardware. The
ability to separate the data collection from the
compression and filing allowed a great simplifi-
cation in the design, and so we were able to start
the logging process days before we had thought
about the disposal process, but before the start
of the university term. The crontab mecha-
nism enables us to delete whole directories con-
taining a single day after 60 days have passed.
We still need to implement a web-interface to
extracting of programs, but the availability of
PERL, Apache, and all the related mechanisms
suggests that this is not a major task.

LAC2005

98

-rw-r—--r-- 1 root root 4801096 Mar 4
-rw-r—--r—- 1 root root 4801096 Mar 4
-rwWw-r—-r--— 1 root root 4801096 Mar 4
-rw-r—--r-- 1 root root 4801096 Mar 4
-rw-r—--r—- 1 root root 4801096 Mar 4
“rwWw-r—--r--— 1 root root 4801096 Mar 4
-rw-r—--r--— 1 root root 4801096 Mar 4
-rw-r—--r-- 1 root root 4801096 Mar 4
-rw-r—--r—- 1 root root 4801096 Mar 4
-TrW-r—--r--— 1 root root 4801096 Mar 4
-rw-r—-r--— 1 root root 4801096 Mar 4
-rw-r—--r—- 1 root root 4801096 Mar 4
-rw-r—--r—- 1 root root 4801096 Mar 4
-rw-r—--r--— 1 root root 4801096 Mar 5
-rw-r—--r-- 1 root root 4801096 Mar 5
-“TW-r—-r--— 1 root root 6912 Mar 5

Figure 3: Part of

Although it is not a major problem to write,
the extraction web page for the system will be
the only part most users see and hence design
for ease of use must be key. Currently, the idea
is to incorporate this into the current URB on-
line presence(URB, 2004) which allows mem-
bers of the station to log into a members area.
We will add a logging page, which presents users
with a very simple interface specifying only the
beginning and end points of the period required.
With their user-names tied to a download desti-
nation, presenters will always find their logs in
the same place, limiting the possibility of con-
fusion.

Being based on such reliable software pack-
ages, we are sure that if we ever have sufficient
funds for an upgrade, for example to a digital
input feed, this can easily be accommodated.
We are aware that the current system lacks re-
dundancy, and a secondary system is high on
our wish-list. More importantly we have not
yet completed a physically distributed back-up
in case the next machine fire does destroy the
disk.

We are confident that as the radio station
continues to be the sound-track of the Univer-
sity of Bath, in the background we are listen-
ing to all the sounds, logging them and making
them available for inspection. With this infras-
tructure in place we might even consider a “play
it again” facility, if the legal obstacles can be
overcome.

Naturally as the program is based on open
source code we are willing to provide our system

22:
23:
23:
23:
23:
23:
23:
23:
23:
23:
23:
23:
23:
00:
00:
01:

55
00
05
10
15
20
25
30
35
40
45
50
55
00
05
10

22:
22:
22:
23:
23:
23:
23:
23:
23:
23:
23:
23:
23:

45:
50:
55:
00:
05:
10:
15:
20:
25:
30:
35:
40:
45:
23:50:
23:55:
index

08
08
08
08
08
o7
o7
07
o7
o7
07
o7
o7
07
o7

.mp3
.mp3
.mp3
.mp3
.mp3
.mp3
.mp3
.mp3
.mp3
.mp3
.mp3
.mp3
.mp3
.mp3
.mp3

an Archive Directory

to anyone else who has this or a similar problem.

8 Acknowledgements

Our thanks go to Simon Lee, the instructor of
Bath University Students’ Union T’ai Chi Club,
for tolerating our discussions before (and some-
times during) training sessions.

References

2004. Notlame mp3 encoder. http://users.
rsise.anu.edu.au/"conrad/not_lame/.
Novell. 2004. http://www.novell.com/

de-de/linux/suse.

OffComm. 2003. Office of Communications
Document: Long-Term Restricted Service
Licences. http://wuw.ofcom.org.uk/
codes_guidelines/broadcasting/radio/
guidance/lo%ng_term_rsl_notes.pdf,
January.

2004. Ogg front end. http://freshmeat.net/
projects/oggenc/.

2004. PortAudio — portable cross-platform
Audio API. http://www.portaudio.com/.
2004. SRA: Student Radio Association. http:

//www.studentradio.org.uk/awards.

2004. URB: University Radio Bath. http://

www.bath.ac.uk/ suurb.

LAC2005

99

LAC2005
100

