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Preface

The Linux Audio “movement” has a long history. It started with individuals work-
ing on pet projects at home, only occasionally showing the results of their work in
postings on forums such as Usenet News. In 1998 a mailing list was formed to serve
as a meeting point for these individuals — developers and users alike. This was
later branded the “Linux Audio Developer’s Mailing List” (LAD).

It became obvious that there was a lot of potential in these people and their soft-
ware, so it seemed like a good idea to demonstrate this to the public in some form.
In July 2001 at the German “LinuxTag” (Europe’s largest expo on all things Linux),
we had an open-source booth (with all expenses paid for by the LinuxTag organiz-
ers) for the first time where we demonstrated certain selected programs to visitors
for 4 days. It was well received, so we did the same thing in the following years.

However, it became apparent that while this was informative and useful for the vis-
itors, it left little time for the booth staff to talk to each other and share knowledge
about their ideas and projects. This fact gave birth to the idea of a “programmer’s
meeting”. We contacted the ZKM during the search for a meeting location in late
2002. The ZKM, in turn, expressed their interest in taking part, and we began plan-
ning together. The ZKM proposed the inclusion of public talks and presentations,
thus transforming the meeting into a conference which could reach a much larger
audience. On March 14–16, 2003, the first conference with roughly 10 presentations
took place (free of charge for all), and everyone agreed that it was a good thing
that should be repeated the following year.

The 2004 conference occurred once again at ZKM, in cooperation with SuSE Linux,
from April 29 to May 2. Due to the success of the first conference, the second was
planned as a significantly larger event. There were more than 30 talks, several work-
shops, demos, a panel discussion, and lots of spontaneous meetings and discussions.
The ZKM engagement in the second conference also increased. While LAC2003
focused on the development of audio software, in 2004 the ZKM helped bring musi-
cians into the mix. The 2004 conference featured several concerts of different types
of electro-acoustic music, including world premieres and a piece by Orm Finnendahl
commissioned by and developed at ZKM. The increase in scope was reflected in the
name change from “Linux Audio Developer’s Conference” to “Linux Audio Confer-
ence”. Attendance to the talks remained free of charge, thanks to the ZKM’s efforts.

As it was the case in 2003 already, interested parties who were unable to attend
the conference in person could listen to the talks through a live audio stream on
the Internet. The talks covered a wide spectrum of topics, including audio archi-
tecture, hard disk recording, audio mastering, software synthesis, sampling, virtual
instruments, spatialization, music notation, computer music, and documentation.

The idea to publish proceedings did not come up until during the conference. There-
fore the proceedings of LAC2004 comprise only a portion of the talks, and we are
especially grateful for the papers that we received. Links to ogg files and abstracts
of all talks can be found at www.zkm.de/lac/2004.

The conference was sponsored by Lionstracs and Hartmann. During the confer-
ence two Linux based synthesizers were presented, Mediastation by Lionstracs and
Neuron by Hartmann.

We owe many thanks to everybody who contributed to the conference and helped
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in making it such a great success. We are looking forward to the LAC2005 which
will take place on April 21–24, 2005.

Frank Neumann, Matthias Nagorni and Götz Dipper
Organization Team LAC2004

Karlsruhe, December 20, 2004
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Application of Wave Field Synthesis in electronic music and sound
installations

M.A.J. Baalman, M.Sc.

Electronic Studio, Communication Sciences, University of Technology, Berlin, Germany
email: marije@baalt.nl.
web: www.nescivi.de

Abstract
Wave Field Synthesis offers new possibilities for
composers of electronic music and to sound artists
to add the dimension of space to a composition.
Unlike most other spatialisation techniques, Wave
Field Synthesis is suitable for concert situations,
where the listening area needs to be large. Using
the software program "WONDER", developed at
the TU Berlin, compositions can be made or setups
can be created for realtime control from other
programs, using the Open Sound Control protocol.
Some pieces that were created using the software
are described to illustrate the use of the program..

Introduction
Wave Field Synthesis is a novel technique for

sound spatialisation, that overcomes the main
shortcoming of other spatialisation techniques, as
there is a large listening area and no "sweet spot".

This paper describes the software interface
WONDER that was made as an interace for
composers and sound artists in order to use the
Wave Field Synthesis technique. A short,
comprehensive explanation of the technique is
given, a description of the system used in the
project at the TU Berlin and the interface software,
followed by a description of the possibilities that
were used by composers.

Wave Field Synthesis
The concept of Wave Field Synthesis (WFS) is

based on a principle that was thought of in the 17th
century by the Dutch physicist Huygens (1690)
about the propagation of waves. He stated that
when you have a wavefront, you can synthesize the
next wavefront by imagining on the wavefront an
infinite number of small sources, whose waves will
together form the next wavefront (figure 1).

Based on this principle, Berkhout (1988)
introduced the wave field synthesis principle in
acoustics.

By using a discrete, linear array of loudspeakers
(figure 2), one can synthesize correct wavefronts in
the horizontal plane (Berkhout, De Vries and Vogel
1993). For a complete mathematical treatment is

referred to Berkhout (1988, 1993) and various other
papers and theses from the TU Delft1.

An interesting feature is that it is also possible
to synthesize a sound source in front of the speakers
(Jansen 1997), something which is not possible
with other techniques.

                                                
1 Sound Control Group, TU Delft,

http://www.soundcontrol.tudelft.nl

Figure 2. The Wave Field Synthesis principle

Figure 1. The Huygens' Principle
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Jansen (1997) derived mathematical formulae
for synthesising moving sound sources. He took
into account the Doppler effect and showed that for
its application one would need to have continuously
time-varying delays. He also showed that for slow
moving sources the Doppler effect is negligible and
one can resort to updating locations and calculating
filters for each location and changing those in time.

This approach was chosen in this project.
Additionally, in order to avoid clicks in playback,
an option was built in to crossfade between two
locations to make the movement sound smoother.

Theoretical and practical limitations of
Wave Field Synthesis

There are some limitations to the technique. The
distance between the speakers needs to be as small
as possible in order to avoid spatial aliasing. From
(Verheijen 1998) we have the following formula for
the frequency above which spatial aliasing occurs:

where c is the speed of sound in air, ∆x the
distance between the speakers and α the angle of
incidence on the speaker array. Thus the frequency
goes down with increasing distance between the
speakers, but it also depends on the angle of
incidence, thus the location of the virtual source,
whether or not aliasing occurs.

Spatial aliasing has a result that a wave field is
not correctly synthesized anymore and artefacts
occur. This results in a bad localisable sound
source. This limitation is a physical limitation,
which can not really be overcome. However it
depends on the sound material whether or not this
aliasing is a problem from a listener's point of view.
In general, if the sound contains a broad spectrum
with enough frequencies below the aliasing
frequency, the source is still well localisable.

On the other end of the frequency spectrum
there is the problem that very low frequencies are
hard to play back on small speakers. For this can
however, just as in other spatialisation systems, a
subwoofer be added, as low frequencies are hard to
localise by the human ear.

Another limitation is that a lot of loudspeakers
are needed to implement the effect. Because of this,
there is research done into loudspeaker panels, so
that it is easier to build up a system.

Finally, a lot of computation power is needed,
as for each loudspeaker involved a different signal
needs to be calculated. With increasing compuation
power of CPU's, this is not really a big problem. At
the moment it is possible to drive a WFS-system
with commercially available PC's.

System setup at the TU Berlin
The prototype system in Berlin was created with

the specific aim to make a system for the use in
electronic music (Weske 2001). The system
consists of a LINUX PC driving 24 loudspeakers
with an RME Hammerfall Soundcard.

For the calculation (in real time) of the
loudspeaker signals the program BruteFIR by
Torger2 is used. This program is capable of making
many convolutions with long filters in realtime.
The filter coefficients can be calculated with the
interface software described in this paper.

With the current prototype system it is possible
to play a maximum of 9 sound sources with
different locations in realtime, even when the
sources are moving. This is the maximum amount
of sources; the exact amount of sources that can be
used in a piece depend on the maximum filter
length used. A detailed overview of the capacity
was given in a paper presented at the ICMC in 2003
(Baalman 2003).

Interface software
In order to work with the system, interface

software was needed to calculate the necessary
filter coefficients. The aim was to create an
interface that allows composers to define the
movements of their sounds, independent of the
system on which it eventually will be played. That
is, the composer should be bothered as less as
possible with the actual calculations for each
loudspeaker, but instead be able to focus on
defining paths through space for his sounds.

The current version of the program WONDER
(Wave field synthesis Of New Dimensions of
Electronic music in Realtime) allows the composer
to do so. It allows the composer to work in two
ways with the program: either he creates a
composition of all movements of all the sound
sources with WONDER, using the composition
tool, or he defines a grid of points that he wants to
use in his piece and controls the movement from
another program using the OpenSoundControl
protocol (Wright e.a, 2003). The main part of the
program is the play engine which can play the
composition created or move the sources in
realtime; a screenshot is given in figure 3.

The array configuration can be set in the
program. It is possible to define the position of
various array segments through a dialog.

WONDER includes a simple room model for
calculation of reflections. The user can define the
position of four walls of a rectangular room, an
absorption factor and the order of calculation. The
calculations are done with the mirror image source
model (see also Berkhout 1988).

                                                
2 Torger, A., BruteFIR,

http://www.ludd.luth.se/~torger/brutefir.html

αsin2 x
cf Nyq ∆

=
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Experiences with composers
During the development of the program, various

compositions were made by different composers, to
test the program and to come up with new options
for the program. These compositions were
presented at different occasions, amongst which
festivals like Club Transmediale in Berlin
(February 2003) and Electrofringe in Newcastle,
Australia (October 2003). I will elaborate about two
compositions and one sound installation.

Marc Lingk, a composer residing in Berlin,
wrote a piece called Ping-Pong Ballet. The sounds
for this piece were all made from ping-pong ball
sounds, which were processed by various
algorithms, alienating the sound from its original.

Using these sounds as a basis, the inspiration for
the movements was relatively easy as the ping-pong
ball game provides a good basis for the distribution
in space of the sounds. In this way he created
various loops of movement for the various sounds
as depicted in figure 4. Paths 1 & 2 are the paths of
the ball bouncing on the table, 3 & 4 of the ball
being hit with the bat, 5 & 6 of multiple balls
bouncing on the table, 7 & 8 of balls dropping to
the floor. Choosing mostly prime numbers for the
loop times, the positions were constantly changing
in relative distance to each other. The movement
was relatively fast (loop times were between 5 and
19 seconds). In the beginning, the piece gives the
impression of a ping-pong ball game, but as it
progresses the sounds become more and more
dense, creating a clear and vivid spatial sound
image.

In the composition "Beurskrach" created by
Marije Baalman, four sources were defined, but
regarded as being points on one virtual object, i.e.
these points made a common movement; the sound
material for these four points were also based on
the same source material, but slightly different
filterings of this, to simulate a real object where
from different parts of the object different filterings
of the sound are radiated. During the composition,
the object comes closer from afar and even comes
in front of the loudspeakers, there it implodes and
scatters out again, making a rotating movement
behind the speakers, before falling apart in the end.
See figure 5 for a graphical overview of this
movement.

The sound installation "Scratch", that was
presented during the Linux Audio Conference,
makes use of the OSC-control over the movements.
The sound installation is created with
SuperCollider, which makes the sound and which
sends commands for the movement to WONDER.
The concept of the sound installation is to create a

Figure 4. The user interface of the play engine of
WONDER

Figure 3. Overview of the movements of the composition "Ping Pong Ballet"
(screenshot from a previous version of WONDER)
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kind of sonic creature, that moves around in the
space. Depending on internal impulses and on
external impulses from the visitor (measured with
sensors), the creature develops itself, and makes
different kinds of sounds, depending on its current
state. The name "Scratch" was chosen because of
two things: as the attempt to create such model for
a virtual creature was the first one, it was still a
kind of scratch for working on this concept. The
other reason was the type of sound, which were
kind of like scratching on some surface.

Conclusions and future work
The program WONDER provides a usable

interface for working with Wave Field Synthesis, as
shown by the various examples of compositions
that have been made using the program.

Future work will be, apart from bug fixing, on
integrating BruteFIR further into the program, in
order to allow for more flexible use in realtime.
Also an attempt will be made to incorporate parts of
SuperCollider into the program, as this audio
engine has a few advantages over BruteFIR that
could be used. Also, there will be work done on
more precise synchronisation possibilities for use
with other programs.

Other work will be done on creating the
possibility to define more complex sound sources
(with a size and form) and implementing more
complex room models.

Credits
WONDER is created by Marije Baalman. The

OSC part is developed by Daniel Plewe.
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RRADical Pd

Author: Frank Barknecht <fbar@footils.org>

Abstract

RRADical Pd is a project to create a collection of Pd patches, that make Pd easier and faster to use for people
who are more comfortable with commercial software like Reason(tm) or Reaktor(tm). RRAD as an acronym
stands for “Reusable and Rapid Audio Development” or “Reusable and Rapid Application Development”, if it
includes non-audio patches, with Pd. In the design of this system, a way to save state flexibly in Pd (persistence)
had to be developed. For communication among each other the RRADical patches integrate the Open Sound
Control protocol.

What it takes to be a RRADical

RRAD as an acronym stands for “Reusable and Rapid Audio Development” or “Reusable and Rapid Application
Development”, if it includes non-audio patches, with Pd. It is spelled RRAD, but pronounced “Rradical” with
a long rolling “R”.

The goal of RRADical Pd is to create a collection of patches, that make Pd easier and faster to use for people
who are more used to software like Reason(tm) or Reaktor(tm). For that I would like to create patches, that solve
real-world problems on a higher level of abstraction than the standard Pd objects do. Where suitable these high
level abstractions should have a graphical user interface (GUI) built in. As I am focused on sound production
the currently available RRADical patches mirror my preferences and mainly deal with audio, although the basic
concepts would apply for graphics and video work using for example the Gem and PDP extensions as well.

Pre-fabricated high-level abstractions may not only make Pd easier to use for beginners, they also can spare
lot of tedious, repeating patching work. For example building a filter using the lop~ object of Pd usually
involves some way of changing the cutoff frequency of the filter. So another object, maybe a slider, will have
to be created and connected to the lop~. The typing and connecting work has to be done almost every time a
filter is used. But the connections between the filter’s cutoff control and the filter can also be done in advance
inside of a so called abstraction, that is, in a saved Pd patch file. Thanks to the Graph-On-Parent feature of
Pd the cutoff slider even can be made visible when using that abstraction in another patch. The new filter
abstraction now carries its own GUI and is immediately ready to be used.

Of course the GUI-filter is a rather simple example (although already quite useful). But building a graphical
note sequencer with 32 sliders and 32 number boxes or even more is something, one would rather have to do
only once, and then reuse in a lot of patches.

Problems and Solutions

To build above, highly modularized system several problems have to be solved. Two key areas turned out to be
very important:

Persistence How to save the current state of a patch? How to save more than one state (state sequencing)?

Communication The various modules are building blocks for a larger application. How should they talk to
each other. (In Reason this is done by patching the back or modules with horrible looking cables. We
must do better.)

It turned out, that both tasks are possible to solve in a consistent way using a unique abstraction. But first
lets look a bit deeper at the problems at hand.

1
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Persistence

Pd offers no direct way to store the current state of a patch. Here’s what Pd author Miller S. Puckette writes
about this in the Pd manual in section “2.6.2. persistence of data”:

Among the design principles of Pd is that patches should be printable, in the sense that the appear-
ance of a patch should fully determine its functionality. For this reason, if messages received by an
object change its action, since the changes aren’t reflected in the object’s appearance, they are not
saved as part of the file which specifies the patch and will be forgotten when the patch is reloaded.

Still, in a musician’s practice some kind of persistence turns out to be an important feature, that many Pd
beginners do miss. And as soon as a patch starts to use lots of graphical control objects, users will - and should
- play around with different settings until they find some combination they like. But unless a way to save this
combination for later use is found, all this is temporary and gone, as soon as the patch is closed.

There are several approaches to add persistence. Max/MSP has the preset-object, Pd provides the similar
state-object which saves the current state of (some) GUI objects inside a patch. Both objects also support
changing between several different states.

But both also have at least two problems: They only save the state of GUI objects, which might not be
everything that a user wants to save. And they don’t handle abstractions very well, which are crucial when
creating modularized patches.

Another approach is to (ab)use some of the Pd objects that can persist itself to a file, especially textfile,
qlist and table, which works better, but isn’t standardized.

A rather new candidate for state saving is Thomas Grill’s pool external. Basically it offers something, that
is standard in many programming languages: a data structure that stores key-value-pairs. This structure also
is known as hash, dictionary or map. With pool those pairs also can be stored in hierarchies and they can
be saved to or loaded from disk. The last but maybe most important feature for us is, that several pools can
be shared by giving them the same name. A pool MYPOOL in one patch will contain the same data as a pool
MYPOOL in another patch. Changes to one pool will change the data in the other as well. This allows us to
use pool MYPOOLs inside of abstractions, and still access the pool from modules outside the abstractions, for
example for saving the pool to disk.

A pool object is central to the persistence in RRADical patches, but it is hidden behind an abstracted “API”,
if one could name it that. I’ll come back to how this is done below.

Communication

Besides persistence it also is important to create a common path through which the RRADical modules will
talk to each other. Generally the modules will have to use, what Pd offers them, and that is either a direct
connection through patch cords or the indirect use of the send/receive mechanism in Pd. Patch cords are fine,
but tend to clutter the interface. Sends and receives on the other hand will have to make sure, that no name
clashes occur. A name clash is, when one target receives messages not intended for it. A patch author has to
remember all used send-names, which might be possible, if he did write the whole patch himself and kept track
of the send-names used. But this gets harder to impossible, if he uses prefabricated modules, which might use
their own senders, maybe hidden deep inside of the module.

So it is crucial, that senders in RRADical abstractions use local names only with as few exceptions as possible.
This is achieved by prepending the RRADical senders with the string “$0-”. So instead of a sender named send
volume, instead one called send $0-volume is used. $0 makes those sends local inside their own patch borders
by being replaced with a number unique to that patch. Using $0 that way is a pretty standard idiom in the Pd
world.

Still we will want to control a lot of parameters and do so not only through the GUI elements Pd offers, but
probably also through other ways, for example through hardware Midi controllers, through some kind of score
on disk, through satellite navigation receivers or whatever.

This creates a fundamental conflict:

We want borders We want to separate our abstraction so they don’t conflict with each other.

We want border crossings We want to have a way to reach their many internals and control them from the
outside.

The RRADical approach solves both requirements in that it enforces a strict border around abstractions but
drills a single hole in it: the OSC inlet. This idea is the result of a discussion on the Pd mailing list and goes
back to suggestions by Eric Skogen and Ben Bogart. Every RRADical patch has (to have) a rightmost inlet
that accepts messages formatted according to the OSC protocol. OSC stands for Open Sound Control and is
a network transparent system to control (audio) applications remotely and is developed at CNMAT in Berkley
by Matt Wright mainly.

LAC2004
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The nice thing about OSC is that it can control many parameters over a single communication path (like
a network conneciton using a definite port). For this OSC uses a URL-like scheme to address parameters
organized in a tree. An example would be this message:

/synth/fm/volume 85

It sends the message “85” to the “volume” control of a “fm” module below a “synth” module. OSC allows
many parameters constructs like:

/synth/fm/basenote 52
/synth/virtualanalog/basenote 40
/synth/*/playchords m7b5 M6 7b9

This might set the base note of two synths, fm and virtualanalog and send a chord progression to be played
by both – indicated by the wildcard * – afterwards.

The OSC-inlet of every RRADical patch is intended as the border crossing: Everything the author of a
certain patch intends to be controlled from the outside can be controlled by OSC messages to the OSC-inlet.
The OSC-inlet is strongly recommended to be the rightmost inlet of an abstraction. At least all of my RRADical
patches do it this way.

Trying to remember it all: Memento

To realize the functionality requirements laid out so far I resorted to a so called Memento. “Memento” is a very
cool movie by director Christopher Nolan where - quoting IMDB:

A man, suffering from short-term memory loss, uses notes and tattoos to hunt down his wife’s killer.

The movie’s main character Leonard has a similar problem as Pd: he cannot remember things. To deal with
his persistence problem, his inability to save data to his internal harddisk (brain) he resorts to taking a lot of
photos. These pictures act as what is called a Memento: a recording of the current state of things.

In software development Mementos are quite common as well. The computer science literature describes them
in great detail, for example in the Gang-Of-Four book “Design Patterns” [Gamma95]. To make the best use of a
Memento science recommends an approach where certain tasks are in the responsibility of certain independent
players.

The Memento itself, as we have seen, is the photo, i.e. some kind of state record. A module called the
“Originator” is responsible for creating this state and managing changes in it. In the movie, Leonard is the
Originator, he is the one taking photos of the world he is soon to forget.

The actual persistence, that could be the saving of a state to harddisk, but could just as well be an upload
to a webserver or a CVS check-in, is done by someone called the “Caretaker” in the literature. A Caretaker
could be a safe, where Leonard puts his photos, or could be a person, to whom Leonard gives his photos. In the
movie Leonard also makes “hard saves” by tattooing himself with notes he took. In that case, he is not only
the Originator of the notes, but also the Caretaker in one single person. The Caretaker only has to take care,
that those photos, the Mementos, are in a safe place and no one fiddles around with them. Btw: In the movie
some interesting problems with Caretakers, who don’t always act responsible, occur.

Memento in Pd

I developed a set of abstractions, of patches for Pd, that follow this design pattern. Memento for Pd includes a
caretaker and an originator abstraction, plus a third one called commun which is responsible for the internal
communication. commun basically is just a thin extension of originator and should be considered part of it.
There is another patch, the careGUI which I personally use instead of the caretaker directly, because it has a
simple GUI included.

Here’s how it looks:

[Gamma95] E. Gamma and R. Helm and R. Johnson and J. Vlissides: “Design Patterns: Elements of Reusable
Object-Oriented Software” Addison-Wesley 1995
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The careGUI is very simple: select a FILE-name to save to, then clicking SAVE you can save the current
state, with RESTORE you can restore a state previously saved. After restore, the outlet of careGUI sends a
bang message to be used as you like.

Internally caretaker has a named pool object using the global pool called “RRADICAL”. The same pool
RRADICAL also is used inside the originator object. This abstraction handles all access to this pool. A user
should not read or write the contents of pool RRADICAL directly. The originator patch also handles the border
crossing through OSC messages by its rightmost inlet. The patch accepts two mandatory arguments: The first
on is the name under which this patch is to be stored inside the pool data. Each originator SomeName
secondarg stores it’s data in a virtual subdirectory inside the RRADICAL-pool called like its first argument -
SomeName in the example. If the SomeName starts with a slash like “/patch” , you can also access it via OSC
through the rightmost inlet of originator under the tree “/patch”

The second argument practically always will be $0. It is used to talk to those commun objects which share the
same second argument. As $0 is a value local and unique to a patch (or to an abstraction to be correct) each
originator then only can talk to communs inside the same patch and will not disturb other commun objects in
other abstractions.

The commun objects finally are where the contents of a state are read and set. They, too, accept two arguments,
the second of which was discussed before and will most of the time just be $0. The first argument will be the
key under which some value will be saved. You should use a slash as first character here as well to allow OSC
control. So an example for a usage would be commun /vol $0.
commun has one inlet and one outlet. What comes in through the inlet is send to originator who stores it

inside its Memento under the key, that is specified by the commun’s first arg. Actually originator. The outlet
of a commun will spit out the current value stored under its key inside the Memento, when originator tells it
to do so. So communs are intended to be cross-connected to some thing that can change. And example would
be a slider which can be connected as seen in the next picture:

In this patch, every change to the slider will be reflected inside the Memento. The little print button in
careGUI can be used to print the contents to the console from which Pd was started. Setting the slider will
result in something like this:

/mypatch 0 , /volume , 38

Here a comma separates key and value pairs. “mypatch” is the top-level directory. This contains a 0, which
is the default subdirectory, after that comes the key “/volume”, whose value is 38. Let’s add another slider for
pan-values:
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Moving the /pan slider will let careGUI print out:

/mypatch 0 , /volume , 38
/mypatch 0 , /pan , 92

The originator can save several substates or presets by sending a substate #number message to its first
inlet. Let’s do just this and move the sliders again as seen in the next picture:

Now careGUI prints:

/mypatch 0 , /volume , 38
/mypatch 0 , /pan , 92
/mypatch 1 , /volume , 116
/mypatch 1 , /pan , 27

You see, the substate 0 is unaffected, the new state can have different values. Exchanging the substate
message with a setsub message will autoload the selected state and “set” the sliders to the stored values
immediately.
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OSC in Memento

The whole system now already is prepared to be used over OSC. You probably already guess, how the message
looks like. Any takers? Thank you, you’re right, the messages are built as /mypatch/volume #number and
/mypatch/pan #number as shown in the next stage:

Sometimes it is useful to also get OSC messages out of a patch, for example to control other OSC software
through Pd. For this the OSC-outlet of originator can be used, which is the rightmost outlet of the
abstraction. It will print out every change to the current state. Connecting a print OSC debug object to it, we
get to see what’s coming out of the OSC-outlet when we move a slider:

OSC: /mypatch/pan 92
OSC: /mypatch/pan 91
OSC: /mypatch/pan 90
OSC: /mypatch/pan 89

Putting it all to RRADical use

Now that the foundation for a general preset and communication system are set, it is possible to build real
patches with it that have two main characteristics:

Rapidity Ready-to-use high-level abstraction can save a lot of time when building larger patches. Clear com-
munication paths will let you think faster and more about the really important things.

Reusability Don’t reinvent the wheel all the time. Reuse patches like instruments for more than one piece by
just exchanging the Caretaker-file used.

I already developed a growing number of patches that follow the RRADical paradigm, among these are a com-
plex pattern sequencer, some synths and effects and more. All those are available in the Pure Data CVS, which
currently lives at pure-data.sourceforge.net in the directory “abstractions/rradical”. The RRADical collection
comes with a template file, called rrad.tpl.pd that makes deploying new RRADical patches easier and lets
developers concentrate on the algorithm instead of bookkeeping. Some utilities help with creating the sometimes
needed many commun-objects. Several usecases show example applications of the provided abstractions.

Much, but not all is well yet

Developing patches using the Memento system and the design guidelines presented has made quite an impact
on how my patches are designed. Before Memento quite a bit of my patches’ content dealed with saving state
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in various, crude and non-unified ways. I even tried to avoid saving states at all because it always seemed to be
too complicated to bother with it. This limited my patches to being used in improvisational pieces without the
possibility to prepare parts of a musical story in advance and to “design” those pieces. It was like being forced
to write a book without having access to a sheet of paper (or a harddisk nowadays). This has changed: having
“paper” in great supply now has made it possible to “write” pieces of art, to “remember” what was good and
what rather should not be repeated, to really “work” on a certain project over a longer time.

RRADical patches also have proven to be useful tools in teaching Pure Data, which is important as usage
of Pd in workshops and at universities is growing – also thanks to its availability as Free Software. RRADical
patches directly can be used by novices as they are created just like any other patch, but they already provide
sound creation and GUI elements that the students can use immediately to create more satisfactory sounds
that the sine waves used as standard examples in basic Pd tutorials. With a grown proficiency the students
later can dive into the internals of a RRADical patch to see what’s inside and how it was done. This allows
a new top-down approach in teaching Pd which is a great complement (or even alternative) to the traditional,
bottom-up way.

Still the patches suffer from a known technical problem of Pd. Several of the RRADical patches make heavy
use of graphical modules like sliders or number boxes, and they create a rather high number of messages to be
send inside of Pd. The message count is alleviated a bit by using OSC, but the graphical load is so high, that
Pd’s audio computation can be disturbed, if too many GUI modules need updating at the same time. This can
lead to dropouts and clicks in the audio stream, which is of course not acceptable.

The problem is due to the non-sufficient decoupling of audio and graphics rsp. message computations in Pd,
a technical issue that is known, but a solution to my knowledge could require a lot of changes to Pd’s core
system. Several developers already are working on this problem, though.

The consistent usage of OSC throughout the RRADical patches created another interesting possibility, that of
collaboration. As every RRADcial patch not only can be controlled through OSC, but also can control another
patch of its own kind, the same patch could be used on two or more machines, and every change on one machine
would propagate to all other machines where that same patch is running. So jamming together and even the
concept of a “Pd band” is naturally build into every RRADcial patch.
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ABSTRACT

An approach to digital audio synthesis is implemented
using recombinant spatialization for signal processing. This
technique, which we call Spatio-Operational Spectral
Synthesis (SOS), relies on recent theories of auditory
perception, especially research by Kubovy and Bregman. In
SOS, the perceptual spatial phenomenon of objecthood is
explored as an expressive musical tool. In musical
applications of these theories, we observe the emergence of
a "persistence of audition" exposing interesting
opportunities for compositional development.

In essence, SOS, breaks an audio signal into
salient components then recombines and spatializes them in
a multichannel environment. Following an introduction to
the technique and several examples demonstrating potential
applications, this paper concentrates on some applications
of the technique in ecoacoustic compositions by Matthew
Burtner, Anugi Unipkaaq, Sikniq Unipkaaq and Siku
Unipaaq. These works draw on environmental systems as
models for multichannel processing.

1. INTRODUCTION

Spatial techniques in music composition can be traced
at least to the 16th century. In the Venetian polychoral
antiphonal tradition in the late 16th and early 17th
centuries,  composers composed for multiple choruses set
around the space, creating a cori spezzati or split chorus.
From the two choir works of Willaert, ca. 1580 the tradition
of Cori Spezzati evolved into an ellaborate practice in the
music of Giovanni Gabrieli.

 The electroacoustic multichannel tradition has roots
back to Varese’s Poeme Electronique (1958) in which over
400 loudspeakers routed multichannel sound throughout the
Philips Pavilion in the Brussels World Fair. These
techniques, including the more recent practices of
electroacoustic music, have concentrated on the projection
of coherent sound object or objects into a defined space.

Spatio-Operational Spectral Synthesis or SOS, is a

signal processing technique based on recent psychoacoustic
research. The literature on auditory perception offers many
clues to the psychoperceptual interpretation of audio
objecthood as a result of streaming theory. Streaming
describes audio objects as sequences displaying internal
consistency or continuity (McAdams and Bregman 1979).
Bregman has further defined a stream as, "a computational
stage on the way to the full description of an auditory event.
The stream serves the purpose of clustering related qualities
(Bregman, 1999)." Thus it becomes the primary defining
factor of an acoustic object.

SOS breaks apart an existing algorithm (ie,
Additive Synthesis, Physical Modeling Synthesis, etc.) into
salient spectral components, with different components
being routed to individual or groups of channels in a
multichannel environment. Due to the inherent limitations
of audition, the listener cannot readily decode the location
of specific spectra, and at the same time can perceive the
assembled signal. In this sense, the nature of the auditory
object is altered by situating it on the threshold of
streaming, between unity and multiplicity.

The "Theory of Indispensable Attributes" (TIA)
proposed by Michael Kubovy (Kubovy and Valkenburg,
2001) puts forth a framework for evaluating the most
critical data the mind uses to process and identify objects.
In the case of audio objects, TIA holds that pitch is an
indispensable attribute of sound while location is not,
simply put, because the perception of audio objects can not
exist without pitch. His experiments have demonstrated that
pitch is a descriminating factor the brain seems to use in
distinguishing sonic objecthood, whereas space is not as
critical.

Bregman notes that conditions can be altered to
make localization easier or more difficult, so that,
"conflicting cues can vote on the grouping of acoustic
components and that the assessed spatial location gets a
vote with the other cues. (Bregman p305)": " Curious about
how Kubovy's and Bregman's theories could be utilized for
signal processing, we began applying spatial processing
algorithms to spectral objects.
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When spectral parameters are spatialized in a certain
manner the components fuse and it is impossible to localize
the sound, yet when they are spatialized differently the
localization or movement is predominant over any type of
spectral fusion. Creatively modulating between fusion and
separation is where SOS comes into being. One of our main
questions is this: if the mind does not treat location as
indespensible, can SOS force the signal into an oscillation
between unity and multiplicity by exploiting spatialization
of the frequency domain?

The technique exploits what might be called a
"Persistence of Audition" insofar as the listener is aware
that auditory objects are moving, but not always completely
aware of where or how. This level of spatial perception on
the part of the listener can also be controlled by the
composer with specific parameters.

SOS is essentially a two-step operation. Step one
consists of taking an existing synthesis algorithm and
breaking it apart into logical components. Step two re-
assembles the individual components generated in the
previous step by applying various spatialization
algorithms. Figure 1 illustrates the basic notion of SOS as
demonstrated in the following example of a square wave.

2. SOS ADDITIVE SYNTHESIS

In initial experiments testing SOS we used simple
mathematical audio objects such as a square wave
generated by summing together sinusoids having odd
harmonics and inversely proportional amplitudes. Formula
(1) describes the basic formula used in this initial example:

xs(t) = sin(w0t) + 1/3 sin(3w0t) + 1/5 sin(5w0t) ...

(1)

In this experiment the first eight sine components of the
additive synthesis square wave model were separated out
and assigned to a specific speaker in an eight-channel
speaker array. Although the square wave is spatially
separated, summation of the complex object is
accomplished by the mind of the listener (Figure 1).

Separation need not be completely discrete
however. Any number of sinusoids can be used and
animated in the space, sharing speakers. In a simple
extension of this example sinusoids were used to generate a
sawtooth wave as shown in Formula (2).

xs(t) = sin(w0t) + 1/2 sin(2w0t) + 1/3 sin(3w0t) ...

(2)

When the sinusoids were played statically, in
separate speakers, the ear can identify the weighting of the
frequency spectrum between different speakers. For

example, if the fundamental is placed directly in front of
the listener and each subsequent partial is placed in the next
speaker clockwise around the array, a slight weighting
occurs in the right front of the array.  The First Wavefront
law would of course suggest this, but in actuality the
blending of the sinusoids into a square wave is more
perceptible than the sense of separation into components. In
fact, the effect is so subtle that a less well-trained ear still
hears a completely synthesized square wave when listening
from the center of the space.

Animating each of the sinusoids in a consistent
manner exhibits a first example of the SOS effect. By
assigning each harmonic a circular path, delayed by one
speaker location in relation to each preceding harmonic, the
unity of the square wave was maintained but each partial
also began to exhibit a separate identity. This of course is
the result, in part, of phase and shifting (eg., circularly
moving) amplitude weights.  The mind of the listener, tries
to fuse the components while also attempting to follow
individual movement.

This simple example illustrates how the
Precedence Effect can be confused so that the mind
simultaneosly can cast conflicting cognitive votes for
oneness and multiplicity in the frequency domain. This
state of ambiguity, as a result of spatial modulation, is what
we call the SOS effect.

We experimented with different rates of circular
modulation of each sine component. Interestingly, each
relationship was different but not necessarily more

Figure 1. SOS Recombinant Principle.
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pronounced than the similar, delayed motion. Using the
same, non-time-varying signal, a time-varying frequency
effect can be achieved due to spatial modulation using only
circular paths in the same direction. Figure 2 illustrates this
type of movement.

Figure 2.  SOS with varying rate circular spatial path of the first
eight partials of a square wave

An early example of spectral separation of this sort
has been implemented in Roger Reynolds' composition,
Archepelago (1983) for orchestra and electronics (Bregman
p296).  In tests done at the IRCAM, Reynolds and Thiery
Lancino divided the spectrum of an oboe between two
speakers and added slight frequency modulation to each
channel. If the FM were the same in both channels the
sound synthesized, but if different FM were added to each
channel, the sounds divided into two independent auditory
objects.
In our later tests, we noticed similar results to Reynolds and
Lancino, even within the context of animated partials.  By
exaggerating the movement of one partial, either by
increasing its rate of revolution, or assigning it a different
path, the partial in question stood out and the SOS effect
was somewhat reduced.  By varying the amount of
oscillation and specific paths of different partials, the SOS
effect can be changed subtly.

Figure 3.  SOS with one partial moving against the others moving
in a unified circular motion.

3. DEFINITIONS OF SOS SPATIAL ARCHETYPES

Any number of spatialization algorithms can be applied to
the separated components' variables or audio stream. The
types of spatialization employed by SOS can be thought of
as having two attributes: motion and quality. A series of
archetypal quality attributes were explored in a two
dimensional environment.
Motion was divided into three categories:

1) static: no motion
2) smooth: a smooth transition between points
3) cut: a broken transition between points

Quality was divided into five archetypical forms:
1) circle: an object defines a circular pattern
2) jitter: an object wobbles around a point
3) across: an object moves between two speakers
4) spread: an object splits and spreads from one

point to many points
5) random: an object jumps around the space

between randomly varying points
These archetypes can be applied globally, to

groups, or to individual channels. Each archetype has
specific variables that can be used to emphasize or de-
emphasize the SOS effect. Variables can also be mapped to
trajectory or rate of change, defined by a time-varying
function, or generated gesturally in real time.
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4. SOS FILTER SUBBAND DECOMPOSITION

The balance between frequency separation and
sonic object animation became much more complicated
when we attempted to apply our initial technique to an
audio signal.  Our initial tests assigned eight simple two
pole IIR filter outputs to discrete speaker locations.
Selection of the ration between the filters became a critical
component in being able to achieve any effect at all.  With
filters set to frequencies that were not very strong in the
underlying signal, the filters tended to blend together and
sound as if some type of combined filtering were taking
place rather than SOS. Similarly, when spatialization
algorithms were applied with an improper filter weight, the
underlying movement was more apparent than the
separation.

We tested the filter technique with both white noise and
live instrument (eg., Tenor Saxophone).  The former of
course offered much more flexibility with respect to
frequency range and filter setup.  The saxophone signal
used, having the majority of its spectrum located between
150Hz and 1500Hz (with significant spectral energy up to
approximately 8000Hz) suggested a filter/bandwidth
weighting of:  32/5Hz, 65/15Hz 130/30Hz, 260/60Hz,
520/120Hz, 1000/240Hz, 2000/500Hz, 4000/1000Hz.

Figure 4:  Saxophone signal subband filter decomposition for
SOS.

5. SOS ECOACOUSTIC EMMERSIVE
ENVIRONMENTS=

Multichannel composition has a basis in acoustic ecology
through Soundscape composition (Truax, 1978/99, 1994).
Multichannel soundscape compositions reconstruct sonic
environments through the sampling and redistribution of

distinct sounds to construct externally referential
environments. A related area of research is ecoacoustics,
an approach that derives musical procedures from abstract
environmental systems, remapping data into structural
musical material. it is a form of sonification for ecological
models (Keller 1999, 2000).

In the most general sense, ecoacoustics is a type
of environmentalism in sound, an attempt to develop a
greater understanding of the natural world through close
perception. In the field of composition, this takes the form
of musical procedures and materials that either directly or
indirectly draw on environmental systems to structure
musical material.

In Winter Raven (Burtner 2001), a large scale
work for instrumental ensemble, 8-channel computer-
generated sound, three video projections, dance and
theater, SOS techniques were implemented in a multimedia
context. Each of the three acts of Winter Raven contains
one Unipkaaq or “story” in Unupiaq Inuit language. Each
of these pieces is scored for 8-channel computer-generated
sound using SOS techniques, percussion, and a dancer
wearing a specially constructed mask. The masked dancer
represents a magical character playing a shamanic role in
the evolution of the piece.

The Shaman character uses three  different masks
in Ukiuq Tulugaq, representing Sun, Ice and Wind. Each
mask is distinguished by different choreography, music
and video processing. An interface written with Isadora,
processes the incoming live video and layers it with
prerecorded video. The electronics from these three
movements contain different SOS processing of the
electronic sound. Each spatialization model corresponds to
a dance mask with interactive video. The combination of
video and multichannel audio evoke a personification of
the environmental elements of sun, ice and wind. In Figure
8, the live video is shown above the corresponding staged
scene.

In the first of these three pieces, Siknik Unipkaaq
(the story of sun), a group of interlocking concentric planal
paths were created (figure 5).

Figure 5:  Siknik Unipkaaq SOS processing
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Spatial modulation tempo ratios of 1 : 2 : 3 : 4 : 5 : 6 : 7 : 8
were employed for the eight independent paths of audio.
The base tempo of the structure was modulated globally,
accelerating from a time base of 1 = 120” to a time base of
1 = 20”. This yields a meta-tempo structure of 120” : 60” :
40” : 30” : 24” : 20” : 17” : 15” which is gradually
collapsed into a mesa-tempo structure of 20” : 10” : 6.7” :
5” : 4” : 3.3” : 2.8” : 2.5”.

In addition to the electronics, a battery of
percussion helps articulate the perpetual motion of this
composition. Two percussionists playing timpani and
cymbals create slow crescendo/decrescendo pulses. Two
other percussionists play congas, bass drum and floor toms,
following a repetitive pattern derived from the spatial
motion. Both the repeated dynamic changes of the
timpani/cymbals and the repeated rhythmic patterns of the
drums, help underscore the cyclical motion of the
computer-generated sound.
 In Siku Unipkaaq (the story of ice) a “shaking”
algorithm was employed to model the freezing of motion
in the spatial domain. Each component of the ice sound
pans between two randomly selected points very rapidly
and gradually reduces movement, increasing frequency.
The panning occurs on the order of 600 to 20 milliseconds,
varying for each particle of sound. The result is a feeling of
gravity pulling the sound towards a single point between
the two spatial anchors. Thus the sound is “frozen” into
multifaceted crystals, continually spawning new paths that
are again frozen. At any given time there are four
simultaneous paths of shaking. In addition, the ice sound is
played out of each speaker quietly to create a background
into which the shaking algorighm can blend smoothly.
Figure 6 depicts this motion type.

Figure 6:  Siku Unipkaaq SOS “shaking” algorithm
A global freezing process is created by two glockenspiel

played by four players. Over the course of the four minutes

of the piece, the density and variety of pitches are reduced,
focussing the frequency energy into reduced bands of
sound. Finally, the voices slow and freeze into individual
points in the frequency spectrum.

Anugi Unipkaaq (the story of wind) m o s t
effectively captures the principle of SOS in this group. The
source material of the work is the sound of wind recorded
in Alaska. The wind is band pass filtered to isolate
individual frequency regiouns of the sound. In this sense it
is treated as the saxophone signal in the experiment
discussed previously. Four such independent wind bands
are created from the original source.

Each excerpted wind channel is panned rapidly
between groups of randomly selected speakers. The path
accelerates lograithmically, speeding up as it approaches its
target point. In figure 7, each straight line represents this
accelerating curve. Amplitude is tied to spatial change such
that the wind sounds crescendo into each new location. The
bands of wind rush simultaneously around the space,
creating a kind of SOS blizzerd of wind.

Figure 7:  Anugi Unipkaaq SOS spatial motion
“blizzard” algorithm

Accompanying the spatialized four winds are four
percussionists. The piece is scored for a solo percussionist
who plays a battery of toms and drums. The other three
players are gathered around a single large bass drum,
playing it simultaneously. At the end of the piece, as the
rhythmic structure concentrates into a single common
rhythm, the solo percussion joins the other players at the
large bass drum and they end together. The four players
focussed around a single point on the stage create a kind of
focus for the four winds thrashing around the hall.
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Figure 6. Each column above shows the processed video (above) and mask dancer (below).  The rows from left to right show:
  Siknik Unipkaaq (the story of sun) Siku Unipkaaq (the story of ice) Anugi Unipkaaq (the story of wind)

6. FUTURE DIRECTIONS

Current SOS research has been done primarily in a two
dimensional environment. Exploring a three dimensional
environment will increase the effect of spatialization
algorithms and offer a greater means of separation for
various models (ie, 3D waveguides).

So far, only the authors who agreed on the
results have performed listening tests. Future work
consists of testing more subjects, in order to see if the
segregation of the synthesis algorithms is performed in
the same way by human listeners.

Much of the psychoacoustic research that
inspired SOS also looks at the related phenomenon of
audio streaming, in sequential segregation. In addition to
exploring SOS based on "spectral" separation, it would
be interesting to explore sequential stream separation and
granular synthesis.

With respect to the creative applications of SOS,
the work described here has relied on macro-level
procedures and more work on micro-level structures (eg
particle-based synthesis) is anticipated. In addition,
stronger and more concrete sonification algorithms will
help articulate the ecoacoustic compositional strategies.
Further integration of the video aspects of the works with
SOS would also be advantageous.
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“Once again text & parenthesis –
sound synthesis with Foo”

Gerhard Eckel
Ramón González-Arroyo

Martin Rumori

April 30, 2004

Foo is a sound synthesis tool based on the Scheme language, a clean and powerful Lisp dialect.
Foo is used for high-quality non-realtime sound synthesis and -processing. By scripting Foo like
a shell it is also a neat tool for implementing common tasks like soundfile conversion, resampling,
multichannel extraction etc.

Note:
According to the talk at the Linux Audio Conference, this text will mainly cover the Foo kernel
layer. This is because the main author of this text, Martin Rumori, is mostly involved with porting
and developing the Foo kernel. Quotation from [5]:

Whereas the Foo kernel layer implements the generic sound synthesis and process-
ing modules as well as a patch description and execution language, the Foo control
layer offers a symbolic interface to the kernel and implements musically salient con-
trol abstractions.

Find out more about the Foo control layer in [4] and [5] and the Foo control layer’s source
code at [1].

1 Introduction

When the Foo-project evolved at ZKM Karlsruhe in 1993, nobody knew how to call it. Just to be able to
talk about, it got the working title “foo” according to RFC 3092. When it came to the first publicly available
version, its “nickname” had got deep into the slang of the authors, and considering that “foo” may stand for
the two main programming paradigms used in it (functional and object oriented) it was decided, not without
some irony, to leave it as its name. Due to that, the installation of Foo at IRCAM’s computers was refused by
their administrator first. . .

Since the SourceForge team has been granted the takeover of the sample project “foo” when the program
was ten years old in late 2003, the existence of /usr/bin/foo is legalized now. To avoid confusion, we
discourage from using the term “foo” as a general sample name in the future :-)

2 History of Foo

Foo was developed by Gerhard Eckel and Ramón González-Arroyo at ZKM Karlsruhe in 1993. Its develop-
ment was continued by the authors in the context of an institutional collaboration between IRCAM and ZKM
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until 1996. At that time, machines by NeXT running NeXTStep were the computers of choice for those tasks.
Since NeXTStep is based on Objective-C, the kernel part of Foo was written in that language as well.

The original motivation was the lack of a high quality tool providing techniques known from the analogue
audio tape, such as varispeed playback. In the digital domain, the most crucial point with those techniques
is the resampling algorithm. Unlike other sound synthesis programs (e. g. Csound with the oscil*- or pha-
sor/table*-opcodes), Foo allowed for scalable, high quality resampling using the Sinc-Interpolator [6] from
the very beginning 1.

After an infrastructure for accessing these key features musically meaningful had been designed and imple-
mented, additional functionality was integrated with Foo, such as oscillators and filters. Thanks to its open
and extensible design, Foo got a standalone, general purpose sound synthesis system.

3 Key concepts of Foo

3.1 Patch generation

Foo was also inspired by patch based sound synthesis systems such as Max/MSP. Similar to an analogue
synthesizer, different basic modules are connected in order to form more complex signal processing entities.

Unlike Max, Foo does not copy the wiring process of an analogue synthesizer one-to-one to the screen.
In fact, Foo is meant as a patch generation language. Currently, this language is Scheme [7], a clean and
powerful LISP dialect. Scheme allows for patch generation in several abstract ways, such as recursion and
high order functions. It is very easy to build patch templates which are instantiated several times with different
parameters, which is quite hard with graphical languages like Max.

In Foo, everything is a signal. There is no distinction between audio rate and control rate, since that
inherently holds the risk of aliasing artefacts. There are Scheme bindings for the constructors of each available
module (unit generator), which evaluate to the signal produced by that modules. This value in turn may be
used as an input for another module constructor.

3.2 Context

Dealing with patches in Foo is done via so called contexts. A context is kind of a container for a patch, which
allows for treating a patch as an entity. From outside a context, the resulting signal of a complete patch is
accessible via the output modules of that patch only.

A context is also a means for “executing” the associated patch. Using a task, one can render a context into
a soundfile. Therefore a context represents exactly the sound it can produce, it is somehow a compressed
description of the sound.

With Foo, it is possible to save such contexts in a binarily serialized form and load them again into the
runtime system. This is useful especially when working with incremental mixing (see 3.5), since you don’t
have to keep all the interim versions as probably large, space-wasting soundfiles.

3.3 Time

Each Foo patch is associated with a context. This is visible for the output modules as well as for temporal
relations.

A Foo context has a local time origin, which is zero. Any patch structures inside the context are temporally
related to this time origin by specifying a time shift. This shift can be positive or negative; the context’s time
axis reaches from negative to positive infinity.

Time shifts can be nested, so that every shift refers to the outer time frame (with the context’s time origin
as outmost frame).

1As of 2002, Csound allows for sinc interpolation by means of the tablexkt opcode
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3.4 Task

A Foo context containing a complex patch is just a description for creating e. g. a sound file. A context itself
knows nothing about the concept of sampling rate, sample format, soundfile headers etc. Thus a context is an
abstract description which could be used in several different environments after it has been constructed.

A Foo task is an execution controller for a context. All the above mentioned parameters are set by the task
object when binding the context to an output medium (currently a sound file, which provides those settings
like sample rate and -format).

A task also provides a means for handling the context’s time model (even Foo is not really able to create
sound files with an infinite duration. . . ). This is done by two temporal related parameters of the task con-
structor: the reference and the offset values. The reference determines where in the associated output sound
file the time origin of the context should be anchored, while the offset parameter specifies at which position in
the context’s time axis the rendering process should start. Together with the duration parameter of the task’s
rendering process, one can specify exactly which part of the context is being rendered.

3.5 Incremental mixing

The clean semantics of task, context and time in Foo allows for another neat feature: the incremental mixing.
Consider contexts different layers of a composition, you might want to be able to incrementally construct the
final composition out of these layers and perhaps do later corrections to one of the layers.

With Foo, a task is not just able to render a context into a new soundfile, but can also add the resulting
sound material into an existing file at a specified time (via the reference parameter). When archiving each of
the involved contexts along with the resulting file, it is later possible to render one of the layers again into a
temporary file and to subtract it from the resulting file. This way, it’s possible to do later corrections in the
layer layout of a composition without having to keep all the intermediate versions and single layers as sound
data.

3.6 Scripting Foo

Another one of the charming features of Foo is its scriptibility. Unlike with other sound synthesis systems,
one does not necessarily has to enter the Foo environment (in other words, the Foo command line prompt) for
doing sound synthesis tasks. Instead, it’s possible to write “Foo scripts” like shell scripts, which could then
be used as standalone signal processing applications. This is extremely useful for recurring basic tasks, like
resampling, or for batch processing in general.

Similar to a shell script, a directive like #!/usr/local/bin/foo sets Foo as the interpreter for a script.
The argument vector issued when calling the script is accessible via the (command-line-args) function
from inside the script. That way it is possible to create complex scripts which are seemlessly integrated with
the usual shell environment.

4 Future plans

The last substantial changes to Foo were made in 1996. Now, with having been ported to Linux and Mac OS
X, Foo gets faced with a completely different world compared to that of the middle nineties. . .

4.1 Dynamically loadable modules

One major goal is to create a more flexible module interface for Foo. By now, the signal processing modules
are compiled into the Foo kernel. A solution with dynamically loadable modules would make it easier for
developers to add new modules to Foo.

This would also allow for interfacing with other DSP systems, such as an interface to LADSPA [8]. We are
also thinking of using Faust [9] as a means for building modules for Foo.
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4.2 Typed signals

To improve the flexibility of Foo, we think of introducing signal types other than audio signals, so that control
signals, triggers etc. could be used more efficiently.

4.3 Further modularization of Foo

Currently, the Foo kernel consists of a single library, which is an extension to the elk [10] Scheme interpreter.
To allow for more flexible use of Foo, it will see some restructuring.

The Foo kernel will be a library written in Objective-C, which could be used for other applications, too.
The interface to the elk interpreter will be done via another lightweight library as an extension. This way, Foo
could be easily interfaced to other Scheme interpreters as well as other languages in general.

4.4 Jack interface

After having ported Foo to Linux, the preliminary direct play support (via the (play~)module) was disabled.
To ease the process of composing with Foo, we think of creating an interface to the jack audio server

[11]. This would mean just a sound file player which is better integrated with Foo than other players; it will
not mean realtime rendering capabilities for Foo. In conjunction with an interface to the jack transport API,
rendering and playing could be triggered by jack events, which makes using sound material created with Foo
in other applications more comfortable.
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Abstract

Spectral processing techniques deal with
frequency-domain representations of signals. This
text will explore different methods and approaches
of frequency-domain processing from basic
principles. The discussion will be mostly non-
mathematical, focusing on the practical aspects of
each technique. However, wherever necessary, we
will demonstrate the mathematical concepts and
formulations that underline the process. This
article is completed with an overview of the
spectral processing classes in the Sound Object
Library. Finally, A simple example is given to
provide some insight into programming using the
library.

1. The Discrete Fourier Transform

The Discrete Fourier Transform (DFT) is an
analysis tool that is used to convert a time-domain
digital signal into its frequency-domain
representation. A complementary tool, the IDFT,
does the inverse operation. In the process of
transforming the spectrum, we start with a real-
valued signal, composed of the waveform samples
and we obtain a complex-valued signal, composed
of the spectrum samples. Each pair of values (that
make up a complex number) generated by the
transform is representing a particular frequency
point in the spectrum. Similarly, each single (real)
number that composes the input signal represents
a particular time point. The DFT is said to
represent a signal at a particular time, as if it was a
‘snapshot’ of its frequency components.

One way of understanding how the DFT works its
magic is by looking at its formula and trying to
work out what it does:
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The whole process is one of multiplying an input
signal by complex exponentials and adding up the
results to obtain a series of complex numbers that
make up the spectral signal. The complex
exponentials are nothing more than a series of

complex sinusoids, made up of cosine and sine
parts:
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The exponent j2πkn/N determines the phase angle
of the sinusoids, which in turn is related to its
frequency. When k=1, we have a sinusoid with its
phase angle varying as 2πn/N. This will of course
complete a whole cycle in N samples, so we can
say its frequency is 1/N (to obtain a value in Hz,
we just have to multiply it by the sampling rate).
All other sinusoids are going to be whole-number
multiples of that frequency, for 1 < k  < N-1. The
number N is the number of points in the analysis,
or the number of spectral samples (each one a
complex number), also known as the transform
size. Now we can see what is happening: for each
particular frequency point k, we multiply the input
signal by a sinusoid and then we sum all the
values obtained (and scale the result by 1/N).

Consider the simple case where the signal x(n) is a
sine wave with a frequency 1/N, defined by the
expression sin(2πn/N). The result of the DFT
operation for the frequency point 1 is shown on
fig.1. The complex sinusoid has detected a signal
at that frequency and the DFT has output a
complex value [0, -0.5] for that spectral sample
(the meaning of –0.5 will be explored later). This
complex value is also called the spectral
coefficient for frequency 1/N. The real part of this
number corresponds to the detected cosine phase
component and its imaginary part relates to the
sine phase component. If we slide the sinusoid to
the next frequency point (k=2) we will obtain the
spectral sample [0, 0], which means that the DFT
has not detected a sinusoid signal at the frequency
(2n/N).

Figure 1. The DFT operation on frequency
point 1, showing how a complex sinusoid is

used to detect the sine and cosine phase
components of a signal.

This shows that the DFT uses the ‘sliding’
complex sinusoid as a detector of spectral
components. When a frequency component in the
signal matches the frequency of the sinusoid, we
obtain a non-zero output. This is, in a nutshell,
how the DFT. Nevertheless, this example shows
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only the simplest analysis case. In any case, the
frequency 1/N is a special one, known as the
fundamental frequency of analysis. As mentioned
above, the DFT will analyse a signal as composed
of sinusoids at multiples of this frequency.

Figure 2. Plot of sin(2π1.3n/N)

Consider now a signal that does not contain
components at any of these multiple frequencies.
In this case, the DFT will simply analyse it in
terms of the components it has at hand, namely the
multiples of the fundamental frequency of
analysis. For instance, take the case of a sine wave
at 1.3/N, sin(2π1.3n/N) (fig.2).  We can check the
result of the DFT on table 1. The transform was
performed using the C++ code above with N=16.

point (k) real part
(re[X(k)])

imaginary part
(im[X(k)])

0 0.127 0.000
1 0.359 0.221
2 -0.151 0.127
3 -0.071 0.056
4 -0.053 0.034
5 -0.046 0.022
6 -0.042 0.013
7 -0.041 0.006
8 -0.040 0.000
9 -0.041 -0.006

10 -0.042 -0.013
11 -0.046 -0.022
12 -0.053 -0.034
13 -0.071 -0.056
14 -0.151 -0.127
15 0.359 0.221

Table 1. Spectral coefficients for a 16-point
DFT of sin(2π1.3n/N)

Although confusing at first, this result is what we
would expect, since we have tried to analyse a
sine wave, which is 1.3 cycles long. We can,
however, observe that one of the two largest pairs
of absolute values is found on points 1. From what
we saw in the first example, we might guess that
the spectral peak is close to the frequency 1/N, as
in fact it is (1.3/N). Nevertheless, the result shows
a large amount of spectral spread, contaminating
all frequency points (see also fig.3). This has to do
with the discontinuity between the last and first
points of the waveform, something clearly seen on
fig.2.

1.1. Reconstructing the time-domain signal
The result in the table above can be used to
reconstruct the original waveform, by applying the
inverse operation to the DFT, the Inverse Discrete
Fourier Transform, defined as:
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In other words, the values of X(k) are [complex]
coefficients, which are used to multiply a set of
complex sinusoids. These will be added together,
point by point, to reconstruct the signal. This is,
basically, a form of additive synthesis that uses
complex signals. The coefficients are the
amplitudes of the sinusoids (cosine and sine) and
their frequencies are just multiples of the
fundamental frequency of analysis. If we use the
coefficients in the table above as input, we will
obtain the original 1.3-cycle sine wave.

We saw above that point 1 refers to the frequency
1/N, and point 2 to 2/N and so on. As mentioned
before, the fundamental frequency of analysis in
Hz will depend on how many samples are
representing our signal in a second, namely, the
sampling rate (SR). So our frequency points will
be referring to kSR/N Hz, with k=0,1,2,..., N-1..
So we will be able to quickly determine the
frequencies for points 0 to N/2, ranging from the 0
Hz to SR/2, the Nyquist frequency, which is the
highest possible frequency for a digital signal.

We can see in table 1 that points 9 to 15 basically
have the same complex values as 7 to 1 (except
for the sign of the imaginary part). It is reasonable
to assume that they refer to the same frequencies.
The sign of the imaginary parts indicates that they
might refer to negative frequencies. This is
because a negative frequency sine wave is the
same as positive one with negative amplitude (or
out-of-phase): sin(-x) = -sin(x). In addition, cos(-x)
= cos(x), so the real parts are the same for
negative and positive frequencies.

The conclusion is simple, the second half of the
points refer to negative frequencies, from –SR/2 to
–SR/N. It is essential to point out that the point
N/2 refers to both SR/2 and –SR/2 (these two
frequencies are indistinguishable). Also, it is
important to note that the coefficients for 0 Hz and
the Nyquist are always purely real (no imaginary
part).  We can see then that the output of the DFT
then, splits the spectrum of a digital waveform in
equally-spaced frequency points, or bands. The
negative and positive spectral coefficients only
differ in their imaginary part. For real signals, we
can see that the negative side of the spectrum can
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always be inferred from the positive side, so it is,
in a way, redundant.

1.2. Rectangular and polar formats
In order to understand further the information
provided by the DFT, we can convert the
representation of the complex coefficients, from
real/imaginary pairs to one that is  more useful to
us. The amplitude of a component is given by the
magnitude of each complex spectral coefficient.
The magnitude (or modulus) of a complex number
z is:

22 ][][ zimzrez +=   (4)

As a real signal is always split into positive and
negative frequencies, the amplitude of a point will
be ½ the ‘true’ value. The values obtained by the
magnitude conversion are know as the amplitude
spectrum of a signal. The amplitude spectrum of a
real signal is always mirrored at 0 Hz.

The other conversion that complements the
magnitude provides the phase angle (or offset) of
the coefficient, in relation to a cosine wave. This
yields the phase offset of a particular component,
and it is obtained by the following  relationship:
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The result of converting the DFT result in this
way is called the phase spectrum. For real signals,
it is always anti-symmetrical around 0 Hz. The
process of obtaining the magnitude and phase
spectrum of the DFT is called cartesian-to-polar
conversion.

Figure 3. Magnitude spectrum from a 16-point
DFT of sin(2π1.3n/N).

We can see from fig.3 that the DFT results are not
always clear. In fact unless the signal has all its
components at multiples of the fundamental
frequency of analysis, there will be a spectral

spread over all frequency points.  In addition to
these problems, the DFT in the present form, as a
one-shot, single-frame transform, will not be able
to track spectral changes. This is because it takes a
single ‘picture’ of the spectrum of a waveform at a
certain time. For a more thorough view of the
DFT theory, please refer to (Jaffe, 1987a) and
(Oppenheimer and Schafer, 1975).

2. Applications of the DFT:
Convolution

The single-frame DFT analysis as explored above
has one important application, the convolution of
time-domain signals through spectral
multiplication. Before we proceed to explore this
technique, it is important to note that the DFT is
very seldom implemented in the direct form
shown above. More usually, we will find
optimised algorithms that will calculate the DFT
much more efficiently. These are called the Fast
Fourier Transform (FFT). Their result is in all
aspects, equivalent to the DFT as described above.
The only difference is in the way the calculation is
performed. Also, because the FFT is based on
specialised algorithms, they will only work with a
certain number of points (N, the transform size).
For instance, the standard FFT algorithm uses
only power-of-two (2,4,..., 512, 1024...) sizes.
From now on, when we refer to the DFT, we will
imply the use of a fast algorithm for its
computation.

Convolution is an operation with signals, just like
multiplication or addition, defined as:
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One important aspect of time-domain convolution
is that it is equivalent to the multiplication of
spectra (and vice-versa). In other words, if y(n)
and h(n) are two waveforms whose fourier
transforms are Y(k) and H(k), then:
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This means that if the DFT is used to transform
two signals into their spectral domain and the two
spectra can be multiplied together, the result can
be transformed back to the time-domain as the
convolution of the two inputs. In this type of
operation, we generally have an arbitrary sound
that is convoluted with a shorter signal, called the
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impulse response. The latter can be thought of as a
mix of scaled and delayed unit sample functions
and also as the list of the gain values in a tapped
delay-line. The convolution operation will impose
the spectral characteristics of this impulse signal
into the other input signal. There are three basic
applications for this technique:

(1) Early reverberation: the impulse response is a
train of pulses, which can be obtained by
recording room reflections in reaction to a
short sound.

(2) Filtering: the impulse response is a series of
FIR filter coefficients. Its amplitude spectrum
determines the shape of the filter.

(3) Cross-synthesis: the impulse response is an
arbitrary sound, whose spectrum will be
multiplied with the other sound. Their
common features will be emphasized and the
overall effect will be one of cross-synthesis.

Depending on the application, we might use a
time-domain impulse response, whose transform
is then used in the process. On other situations, we
might start with a particular spectrum, which is
directly used in the process. The advantage of this
is that we can define the frequency-domain
characteristics that we want to impose on the other
sound.

2.1. A DFT-based convolution application
We can now look at the nuts and bolts of the
application of the DFT in convolution. The first
thing to consider is that, since we are using real
signals, there is no reason to use a DFT that
outputs both the positive and negative sides of the
spectrum. We know that the negative side can be
extracted from the positive, so we can use FFT
algorithms that are optimised for the real signals.
The discussion of specific aspects of these
algorithms is beyond the scope of this text, but
whenever we refer to the DFT, we will imply the
use of a real input transform.

Basically, the central point of the implementation
of convolution with the DFT is the use of the
overlap-add method after the inverse transform.
Since our impulse response will be of a certain
length, this will determine the transform size (we
will capture the whole signal in one DFT). The
other input signal can be of arbitrary length, all we
will need to do is to keep taking time slices of it
that are the size of the impulse response. Now,
because we know that the resulting length of the
convolution of two signals is the sum of their
lengths minus one, this will determine the
minimum size of the transform (because the IDFT

output signal, as a result of the convolution, will
have to be of that length).

The need for an overlap-add arises because, as the
length of the convolution is larger than the
original time-slice, we will need to make sure the
tail part of it is mixed with the next output block.
This will align the start of each output block with
the original start of each time-slice in the input
signal. So, if the impulse response size is S, we
will slice the input signal in blocks of S samples.
The convolution output size will be 2S – 1, and
the size of the transform will be the first power-of-
two not less than that value.

The inputs to the transform will be padded to the
required size. After the multiplication and the
IDFT operation, we will have a block of 2S – 1
samples containing the signal output (the zero
padding will be discarded). All we need to do is to
time-align it with the original signal, by
overlapping the first S – 1 samples of  this block
with the last S –1 samples of the previous output.
The overlapping samples then are mixed together
to form the final output. Fig.4 shows the input
signal block sizes and the overlap-add operation.

Figure 4.  Convolution input and output block
sizes and the overlap-add operation.

In terms of realtime applications, it is important to
remark that there is an implicit delay in the DFT-
based convolution. This is determined by the
length of the impulse response. So with longer
responses, a possible realtime use is somewhat
compromised.

3. The Short-Time Fourier Transform

So far we have been using what we described as a
single-frame DFT, one ‘snapshot’ of the spectrum
at a specific time point. In order to track spectral
changes, we will have to find a method of taking a
sequence of transforms, at different points in time.
In a way, this is similar to the process we used in
the convolution application: we will be looking at
extracting blocks of samples from a time-domain
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signal and transform them with the DFT. This is
known as the Short-Time Fourier Transform. The
process of extracting the samples from a portion
of the waveform is called windowing. In other
words, we are applying a time window to the
signal, outside which all samples are ignored.

Figure 5. Rectangular window and
discontinuities in the signal.

Time windows can have all sorts of shapes. The
one we used in the convolution example is
equivalent to a rectangular window, where all
window contents are multiplied by one. This
shape is not very useful in STFT analysis, because
it can create discontinuities at the edges of the
window (fig.5). This is the case when the analysed
signal contains components that are not integer
multiples of the fundamental frequency of
analysis. These discontinuities are responsible for
analysis artifacts, such as the ones observed in the
above discussion of the DFT, which limit the its
usefulness.

Figure 6.  Windowed signal, where the ends
tend towards 0.

Other shapes that tend towards 0 at the edges will
be preferred. As the ends of the analysed segment
meet, they eliminate any discontinuity (fig.6).

The effect of a window shape can be explained by
remembering that, as seen before in (7), when we
multiply two time-domain functions, the resulting
spectrum will be the convolution of the two
spectra. This is of course, the converse case of the
convolution of two time-domain functions as seen
in the section above. The effect of convolution in
the amplitude spectrum can be better understood
graphically. It is the shifting and scaling of the
samples of one function by every sample of the
other. When we use a window function in the
DFT, we are multiplying the series of complex
sinusoids that compose it by that function. Since
this process results in spectral convolution, the
resulting amplitude spectrum of the DFT after

windowing will be imposition of the spectral
shape of a window function on every frequency
point of the DFT of the original signal (fig.7). A
similar effect will also be introduced in the phase
spectrum.

When we choose a window that has an amplitude
spectrum that have a peak at 0 Hz and dies away
quickly to zero as the frequency rises, we will
have a reasonable analysis result. This is case of
the ideal shape in fig.7, where each analysis point
will capture components around it and ignore
spurious ones away form it.

Figure 7. A simplified view of the amplitude
spectrum of a windowed DFT as a convolution
of the DFT sinusoids and the window function.
The dotted lines mark the position of each DFT

frequency point.

In practice, several windows with such low-pass
characteristics exist. The simplest  and more
widely-used are the ones based on raised inverted
cosine shapes, the Hamming and Hanning
windows defined as:
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In order to perform the STFT, we will apply a
time-dependent window to the signal and take the
DFT of the result. This will mean also that we are
making the whole operation a function of time, as
well as frequency. Here is a simple definition for
the discrete STFT of an arbitrary-length waveform
x(n) at a time point t:
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Figure 8.  Spectral plots for rectangular,
Hamming and Hanning windows (positive

frequencies only).

The STFT provides a full spectral frame for each
time point.. In general, it is possible to take as
little as four overlapped transforms (hopsize =
N/4) to have a good resolution. Effectively, when
using the STFT output for signal processing, the
smallest hopsize will be determined by the type of
window used (N/4 is the actual value for
Hamming and Hanning windows).

The overlapped spectral frames can be
transformed back into the time-domain by
performing an inverse DFT on each signal frame.
In order to smooth any possible discontinuities,
we will also apply a window to each transformed
signal block. The waveform is reconstituted by
applying an overlap-add method that is very
similar to the one employed in the convolution
example.

4. Spectral Transformations:
Manipulating STFT data

Each spectral frame can be considered as a
collection of complex pairs relative to the
information found on equally-spaced frequency
bands at a particular time. They will contain
information on the amplitude and frequency
contents detected at that band. The rectangular, or
cartesian, format that is the output of the transform
packs these two aspects of the spectrum in the real
and imaginary parts of  each complex coefficient.
In order to separate them, all we need to do is to
convert the output into a polar representation. The
magnitudes will give us the amplitude of each bin
and the phases will be indicative of the detected
frequencies. A single STFT frame can give us the
amplitudes for each band, but we will not be able
to obtain proper frequency values for them. This
would imply extracting the instantaneous
frequency, which is not really possible with one
STFT measurement. Instead, the phases will
contain the frequency information in a different
form.

4.1. Cross-synthesis of frequencies and
amplitudes

The first basic transformation that can be achieved
in this way is cross-synthesis. There are different
ways of crossing aspects of two spectra. The
spectral multiplication made in the convolution
example is one. By splitting amplitude and
frequency aspects of spectra, we can also make
that type of operation separately on each aspect.
Another typical cross-synthesis technique is to
combine the amplitudes of one sound with the
frequencies of another. This is a spectral version
of the time-domain channel vocoder. Once we
have the STFT spectra of two sounds, there could
not be an easier process to implement:

1. Convert the rectangular spectral samples into
magnitudes and phases.

2. Take the magnitudes of one input and the
phases of the other and make a new spectral
frame, on a frame-by-frame basis.

3. Convert the magnitudes and phases to
rectangular format. This is done with the
following relationships:
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and )cos(][
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The resulting spectral frames in rectangular format
can then be transformed back to the time-domain
using the ISTFT and the overlap-add method.

4.2. Spectral-domain filtering
If we manipulate the magnitudes separately, we
might also be able to create some filtering effects
by applying a certain contour to the spectrum. For
instance, to generate a simple low-pass filter we
can use the ¼ of the shape of the cosine wave and
apply it to all points from 0 to N/2. The function
used for shaping the magnitude will look like this:
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A high-pass filter could be designed by using a
sine function instead of cosine in the example
above. In fact, we can define any filter in spectral
terms and use it by multiplying its spectrum with
the STFT of any input sound. This leads us back
into the convolution territory. Consider the typical
2-pole resonator filter design, whose transfer
function is:
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Here, θ  is the pole angle and R its radius (or
magnitude), parameters that are related to the filter
centre frequency and bandwidth, respectively. The
scaling constant A0  is used to scale the filter
output so that it does not run wildly out-of-range.
Now if we evaluate this function for evenly-
spaced frequency points z = e j2πk/N, we will reveal
the discrete spectrum of that filter. All we need to
do is to do a complex multiplication of the result
with the STFT of an input sound.

The mathematical steps used to obtain the
spectrum of the filter are based on Euler’s
relationship, which splits the complex sinusoidal e
jω into its real and imaginary parts, cos(ω) and
jsin(ω). Once we obtained the spectral points in
the rectangular form A0(a + ib)-1, all we need is to
multiply them with the STFT points of the original
signal. This will in reality turn out to be a complex
division:
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There are many more processes that can be
devised for transforming the output of the STFT.
The examples given here are only the start. They
represent some classic approaches, but several
other, more radical techniques can be explored.

5. Tracking the Frequency: the Phase
Vocoder.

As we observed, although we can manipulate the
frequency content of spectra, through their phases,
the STFT does not have enough resolution to tell
us what frequencies are present in a sound. We
will have to find a way of tracking the
instantaneous frequencies in each spectral band. A
well-known technique known as the Phase
Vocoder (PV) (Flanagan and Golden, 1966) can
be employed to do just that.

The STFT followed by a polar conversion can also
be seen as a bank of parallel filters. Its output is
composed of the values for the magnitudes and
phases at every time-point or hop period for each
bin. The first step in transforming the STFT into a
Phase Vocoder is to generate values that are
proportional to the frequencies present in a sound.
This is done ideally by the taking the time
derivative of the phase, but we can approximate it
by computing the difference between the phase

value of consecutive frames, for each spectral
band. This simple operation, although not yielding
the right value for the frequency at a spectral
band, will output one that is proportional to it.

By keeping track of the phase differences, we can
time-stretch or compress a sound, without altering
its frequency content (in other words, its pitch).
We can perform this by repeating or skipping
spectral blocks, to stretch or compress the data.
Because we are keeping the phase differences
between the frames, when we accumulate them
before resynthesis, we will reconstruct the signal
back with the correct original phase values. We
are keeping the same hop period between frames,
but because we use the phase difference to
calculate the next phase value, the phases will be
kept intact, regardless of the frame readout speed.

One small programming point needs to be made in
relation to the phase calculation. The inverse
tangent function outputs the phase in the range of
–π to π. When the phase differences are
calculated, they might exceed this range. In this
case, we have to bring them down to the expected
interval (known as principal values). This process
is sometimes called phase unwrapping.

Figure 9. Signal frame rotation, according to
input time point

5.1. Frequency estimation
So far we have been working with values that are
proportional to the frequencies at each analysis
band. In order to obtain the proper values in Hz,
we will have to first modify the input to the STFT
slightly. We will rotate the windowed samples
inside the analysis frame, relative to the time point
n (in samples and taken modulus N) of the input
window. If our window has 1024 samples and we
are hopping it every 256 samples, the moduli of
the successive time-points n will be 0, 256, 512,
768, 0, 256.... The rotation will imply that for time
point 256, we will move samples from positions 0
– 767 into positions 256 to 1023. The last 256
samples will be moved to the first locations of the
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block. A similar process is applied to the other
time points (fig. 9).

The mathematical reasons for this input rotation
are somewhat complex, but the graphic
representation shown on fig. 9 goes some way on
helping us understand the process intuitively. As
we can see the rotation process has the effect of
aligning the phase of the signal in successive
frames. This will help us obtain the right
frequency values, but we will better understand it
after seeing the rest of the process. In fact, the
input rotation renders the STFT formulation
mathematically correct, as we have been using a
non-rigorous and simpler approach (which so far
has worked for us).

After the rotation, we can take the DFT of the
frame as usual and convert the result into polar
form. The phase differences for each band are then
calculated. This now tells us how much each
detected frequency deviates from the centre
frequency of its analysis band. The centre
frequencies are basically the DFT analysis
frequencies 2πk/N, in radians. So, to obtain the
proper detected frequency value, we only need
add the phase differences to the centre frequency
for each analysis band, scaled by the hopsize. The
values in Hz can be obtained by multiplying the
result, which is given in radians per hopsize
samples, by SR/[2π x hopsize] (SR is, of course,
the sampling rate in samples/sec).

Here is a summary of the steps involved in phase
vocoder analysis:
1. Extract N samples from a signal and apply an

analysis window. Rotate the samples in the
signal frame according to input time n mod N.

2. Take the DFT of the signal.
3. Convert rectangular coefficients to polar

format.
4. Compute the phase difference and bring the

value to the -π to +π range.
5. Add the difference values to 2πkD/N, and

multiply the result by SR/2πD, where D is the
hopsize in samples. For each spectral band,
this result yields its frequency in Hz, and the
magnitude value, its peak amplitude.

5.2. Phase vocoder resynthesis
Phase Vocoder data can be resynthesised using a
variety of methods. Since we have blocks of
amplitude and frequency data, we can use some
sort of additive synthesis to playback the spectral
frames. However, a more efficient way of
converting to time-domain data for arbitrary
sounds with many components is to use an

overlap-add method similar to the one in the
ISTFT. All we need to do is retrace the steps taken
in the forward transformation:

1. Convert the frequencies back to phase
differences in radians per I samples by
subtracting them from the centre frequencies
of each channel, in Hz, kSR/N, and
multiplying the result by 2πI/SR, where I is
the synthesis hopsize.

2. Accumulate them to compute the current
phase values.

3. Perform a polar to rectangular conversion.
4. Take the IDFT of the signal frame.
5. Unrotate the samples and apply a window to

the resulting sample block.
6. Overlap-add consecutive frames.

As a word of caution, it is important to point out
that all DFT-based algorithms will have some
limits in terms of partial tracking. The analysis
will be able to resolve a maximum of one
sinusoidal component per frequency band. If two
or more partials fall within one band, the phase
vocoder will fail to output the right values for the
amplitudes and frequencies of each of them.
Instead, we will have an amplitude-modulated
composite output, in many ways similar to beat
frequencies. In addition, because the DFT splits
the spectrum in equal-sized bands, this problem
will mostly affect lower frequencies, where bands
are perceptually larger. However, we can say that
in general, the phase vocoder is a powerful tool
for transformation of arbitrary signals.

5.3. Spectral morphing
A typical transformation of PV data is spectral
interpolation, or morphing. It is a more general
version of the spectral cross-synthesis example
discussed before. Here, we interpolate between the
frequencies and amplitudes of two spectra, on a
frame-by-frame basis.

Spectral morphing can produce very interesting
results. However, its effectiveness depends very
much on the spectral qualities of the two input
sounds. When the spectral data does not overlap
much, interpolating will sound more or less like
cross-fading, which can be achieved in the time-
domain for much less trouble. There are many
more transformations that can be devised for
modifying PV data. In fact, any number
manipulation procedure that generates a spectral
frame in the right format can be seen as a valid
spectral process. Whether it will produce a
musically useful output is another question.
Understanding how the spectral data is generated
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in analysis is the first step in designing
transformations that work.

For a more detailed look into the theory of the
Phase Vocoder, please refer to the James
Flanagan’s original article on the technique. Other
descriptions of the technique are also found in
(Dolson, 1986) and (Moore, 1990).

6. The Instantaneous Frequency
Distribution

An alternative method of frequency estimation is
given by the instantaneous frequency distribution
(IFD) algorithm proposed by Toshihiko Abe (Abe
et al, 1997). It uses some of the principles already
seen in the phase vocoder, but its mathematical
formulation is more complex. The basic idea,
which is also present in the PV algorithm, is that
the frequency, or more precisely, the
instantaneous frequency detected at a certain band
is the time derivative of the phase. Using Euler’s
relationship, we can define the output of the STFT
in polar form. This is shown below, using ω =
2πk/N:

),(),(),),(( tjetRtknxSTFT ωθω ×=
  (14)

The phase detected by band k at time-point t is
θ(2πkn/N, t) and the magnitude is R(2πkn/N, t).
The Instantaneous Frequency Distribution of x(n)
at time t is then the time derivative of the STFT
phase output:
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This can be intuitively understood as the
measurement of the rate of rotation of the phase
of a sinusoidal signal. In the phase vocoder, we
estimated it by crudely taking the difference
between phase values in successive frames. The
IFD actually calculates the time derivative of the
phase directly, from data corresponding to a single
time-point:
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The mathematical steps involved in the derivation
of the IFD are quite involved. However, if we
want to implement the IFD, all we need is to
employ its definition in terms of DFTs, as given

above. We can use the straight DFT of a
windowed frame to obtain the amplitudes and use
the IFD to estimate the frequencies. Also, because
we are using the straight transform of a windowed
signal, there is no need to rotate the input, as in
the phase vocoder. If we look back at the DFT as
defined in (19), we see that it, in fact, does not
include the multiplication by a complex
exponential (as does the STFT). Finally, the
derivative of the analysis window is generated by
computing the differences between its consecutive
samples..

7. Tracking spectral components:
Sinusoidal Modelling

Sinusoidal modelling techniques are based on the
principles that we have held all along as the
background to what we have done so far: that
time-domain signals are composed of the sum of
sinusoidal waves of different amplitudes,
frequencies and phases. The number of sinusoidal
components present in the spectrum will vary
from sound to sound, and also can vary
dynamically during the evolution of a single
sound. As we have pointed out before, since we
are still using STFT-based spectral analysis, at any
point in time, the maximum resolution of
components will depend on the size of each
analysis band. Partial tracking will, therefore, not
be suitable for spectrally dense sounds. However,
there will be many musical signals that can be
manipulated through this method.

7.1. Sinusoidal Analysis
The principle behind sinusoidal analysis is very
simple, although its implementation is somewhat
involved. Using the magnitudes from STFT
analysis, we will identify the spectral peaks at the
integral frequency points (STFT bins or bands).
The identified peaks will have to be above a
certain threshold, which will help separate the
detected sinusoid components from transient
spectral features. The exact peak position and
amplitude can be estimated by using an
interpolation procedure based on the magnitudes
of the bins around the peaks. With the interpolated
bin positions we can then find the exact values for
the frequencies and phases obtained originally
from the IFD/STFT input, again through
interpolation. These will then, together with the
amplitude, form a ‘track', linked to each detected
peak (fig. 11). However the track will only exist as
such if there is some consistency in consecutive
frames, ie. if there is some matching between
peaks found at each time-point. When peaks are
short-lived, they will not make a track.
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Conversely, when a peak disappears, we will have
to wait a few frames to declare the track as
finished. So most of the process becomes one of
track management, which accounts for the more
involved aspects of the algorithm.

As seen in fig.10, the sinusoidal analysis will
output tracks made up of frequencies, amplitudes
and phases. This in turn can be used for additive
re-synthesis of the signal or of portions of its
spectrum. One typical method involves the use of
the phase and frequency parameters to calculate
the varying phase used to drive an oscillator. This
uses the two parameters in a cubic interpolation,
which is not only mathematically involved, but
also computationally intensive. A simpler version
can be formulated that would employ only the
frequency and amplitudes interpolated linearly.
This is simpler, more efficient and for many
applications sufficiently precise. Also, since we do
not require the phase parameter, we can simplify
the analysis algorithm to calculate only
frequencies and amplitudes for each track. This
version could employ either the IFD (as shown in
fig.12) or the Phase Vocoder, as discussed in the
previous sections, to provide the magnitude and
frequency inputs.

Figure 10.  Sinusoidal analysis and track
generation from a time-domain signal x(n).

7.2. Additive resynthesis
The additive resynthesis procedure will take the
track frames and use a frame-by-frame
interpolation of the amplitudes and frequencies of
each track to drive a bank of sinewave oscillators
(fig.12). We will only need to be careful about
using the track IDs to perform the interpolation
between the frames. Also, when a track is
created/destroyed, we will create an amplitude
onset/decay so that we do not have discontinuities
in the output signal. We will be using
interpolating lookup oscillators, with a table size
of 1024 points to generate the signal for each
track. Each sine wave component will be then
mixed into the output.

Figure 11.  The additive synthesis process.

The main point about this type of analysis is that it
is designed to track the sinusoidal components of
a signal. Some sounds will be more suitable for
this analysis than others. Distributed spectra will
not be tracked very effectively, since its
complexity will not suit the process. However, for
certain sounds with both sinusoidal content and
some more noise-like/transient elements, we could
in theory obtain these ‘residual’ aspects of the
sound by subtracting the resynthesised sound from
the original. That way, we would be able to
separate these two elements and perhaps process
them individually. A more precise method of
resynthesis, using the original phases is required
for the residual extraction to work. This idea is
developed in the Spectral Modelling Synthesis
(SMS) technique (Serra, 1997).

8. Spectral processing with the Sound
Object Library

The Sound Object (SndObj) library (Lazzarini,
2000) is a multi-platform music and audio
processing C++ class library. Its 100-plus classes
feature support for the most important time and
frequency-domain processing algorithms, as well
as basic soundfile, audio and MIDI IO services.
The library is available for Linux, Irix, OS X and
Windows; its core classes are fully portable to any
system with ANSI C/C++ compilers.

The spectral processing suite of classes of the
SndObj version 2.5.1 include the following:

(a) Analysis/Resynthesis:
FFT     STFT analysis
IFFT   ISTFT resynthesis
PVA    Phase Vocoder Analysis
PVS    Phase Vocoder Synthesis
IFGram IFD + Amps (and phases) analysis
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SinAnal Sinusoidal track analysis
SinSyn Sinusoidal synthesis (cubic interpolation)
AdSyn Sinusoidal synthesis (linear interpolation)
Convol FFT-based convolution

(b) Spectral Modifications
PVMorph  PV data interpolation
SpecMult   spectral product
SpecCart    polar-rectangular conversion
SpecSplit/SpecCombine
                    split/combine amps & phases
SpecInterp  spectral interpolation
SpecPolar    rectangular-polar conversion
SpecThresh  thresholding
SpecVoc       cross-synthesis

(c) Input/Output
PVRead variable-rate PVOCEX file readout
SpecIn  spectral input
SndPVOCEX   PVOCEX file IO
SndSinI0  sinusoidal analysis file IO

In addition, the library provides a development
framework for the addition of further processes.
The processing capabilities can be fully extended
by user-defined classes.

8.1. A programming example
The following example shows the use of the
library for the development of a PD class for
spectral morphing (Fig.12). Here we see how
SndObj objects are set-up in the PD class
constructor code:

void *morph_tilde_new(t_symbol *s, int
                      argc, t_atom *argv)
{
(...)
x->window = new HammingTable(1024, 0.5);
x->inobj1 = new SndObj(0, DEF_VECSIZE,
                       sr);
x->inobj2 = new SndObj(0, DEF_VECSIZE,
                       sr);
x->spec1  = new PVA(x->window, x->inobj1,
                    1.f, DEF_FFTSIZE,
                    DEF_VECSIZE, sr);
x->spec2  = new PVA(x->window, x->inobj2,
                    1.f, DEF_FFTSIZE,
                    DEF_VECSIZE, sr);
x->morph  = new PVMorph(morphfr, morpha,
                      x->spec1, x->spec2,
                       0,0,DEF_FFTSIZE,
                       sr);
x->synth  = new PVS(x->window, x->morph,
                    DEF_FFTSIZE,
                    DEF_VECSIZE, sr);
(...)
}

Figure 12.  The morph~ object in a PD patch.

The class perform method will then contain the
calls to SndObj::DoProcess() methods of each
processing object. The methods SndObj::PushIn()
and SndObj::PopOut() are used to send the signal
into the SndObj chain and to get the processed
output, respectively:

t_int  *morph_tilde_perform(int *w){
     t_sample *in1 = (t_sample*) w[1];
     t_sample *in2 = (t_sample*) w[2];
     t_sample *out = (t_sample*) w[3];
     t_int  size =   (t_int)     w[4];
     t_morph_tilde *x =
                 (t_morph_tilde*)w[5];

     int pos =
       x->inobj1->PushIn(in1, size);
     x->inobj2->PushIn(in2, size);
     x->synth->PopOut(out, size);

     if(pos == DEF_VECSIZE){
x->spec1->DoProcess();
x->spec2->DoProcess();

 x->morph->DoProcess();
x->synth->DoProcess();

}
      return (w+6);
}

9. Conclusion

The techniques of spectral processing are very
powerful. We have seen that they in fact have a
multitude of applications, of which we saw the
classic and most important ones. The standard
DFT is generally a very practical spectral analysis
tool, mostly because of its simplicity and
elegance, as well as the existence of fast
computation algorithms for it. There are
adaptations and variations of it, which try to
overcome some of its shortcomings, with
important applications in signal analysis.
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Nevertheless their use in sound processing and
transformation is still somewhat limited. In
addition to Fourier-based processes, which have
so far been the most practical and useful ones to
implement, there are other methods of spectral
analysis. The most important of these is the
Wavelet Transform (Meyer, 1991), which so far
has had limited use in audio signal processing.
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Abstract
AlsaModularSynth   is  designed  as  a  modular  synthesizer
for   realtime  performance.  When  used   together  with   the
VCO and filter plugins developed by Fons Adriaensen, it
features a faithful emulation of vintage analogue modular
systems. This article is a summary of the talk presented at
the 2. Linux Audio Conference. It gives an overview over
AlsaModularSynth with emphasis on parameter interfaces
and MIDI I/O.

1. Introduction
An instrument designed for  expressive live performance
should offer a limited number of controls that the musician
can modify in  a  deterministic and intuitive way.   Ideally
these   controls   allow   a   wide   variation   of   volume   and
timbre.
In   electronic   music,   either   analogue   circuits   or   virtual
oscillators and filters are used to create the desired sound
spectra.   Patches   for   all   three   „classical“   synthesis
techniques,   namely   additive,   subtractive   and   frequency
modulation   (FM)   synthesis   can   be   realized   with
AlsaModularSynth.   As   will   be   shown   in   this   article,
subtractive   synthesis   offers   the   limited   parameter   set
required for live performance and is therefore still widely
used for this purpose.

2. Expressive historic electronic instruments
Surprisingly, it was already in the early days of electronic
music   that  its  most   expressive exponent   was   invented:
Around 1918 Lev S. Termen invented the instrument that
bears his name. The Theremin is the only instrument that
is played without touching it.

  Fig. 1: The author demostrating how to play a Theremin.

However the Theremin is even more difficult to play than
a string instrument. Therefore let's go back to the world of
keyboard instruments. Also in this area some of the earlier

designs   allow   a   much   more   expressive   playing   than
current   commercial   keyboards.   Probably   the   most
advanced example is the Sackbut synthesizer built in 1948
by Hugh Le Caine [1].
Its keyboard did not not only feature velocity sensitivity
but   also   pitch  control.   When   a   key   was   moved
horizontally the respective pitch would change. While the
player was assumed to play the notes with his right hand,
the left hand was supposed to modify the timbre. For this
there   were  pressure­sensitive controls   for   each   finger
(numbering as in piano scores):

1:     Main Formant, Auxiliary Formant
2:     Basic Waveform Control
3­5:  Controls which produce departure from periodicity 

The webpage [1] lists also other instruments by Hugh Le
Caine and has some useful links.

3. AlsaModularSynth and MIDI
Controls   of   such   complexity   are   not   available
commercially.   Anyway   it's  even   more   fun   to   design
alternate   controls   oneself.   The   Linux   operating   system
with its open source approach is ideally suited for building
interfaces to alternate input devices. Frank Neumann has
e.g. written a MIDI driver for  a graphic tablet offering 5
independent parameters: Pos­X, Pos­Y, Pressure, Tilt­X, 
Tilt­Y.  The   modular   synthesizer   AlsaModularSynth   is
designed to offer a flexible interface to MIDI controllers.
Any parameter  of a patch can be bound  to  either MIDI
controller or note events.

 
  
       

     Fig. 2: The main window of AlsaModularSynth with a
  three­oscillator     patch   typical   for   subtractive  
 synthesis.

All MIDI bindings are defined in the „AlsaModularSynth
Control  Center“.   If   the   window   is   visible   and   receives
MIDI   Controller   events,   the   respective  controllers   are
listed   in   the   left   list.   They   can   then   be   bound   to   the
parameters   listed   below   their   respective   module   in   the
right   list.   In   many   cases   only   a   limited   range   of   a
continuous   parameter   is   used.   Therefore   the   range   to
which the MIDI range of 0..127 is mapped can be freely
chosen.   For   each   continuous   parameter   a   logarithmic
mapping can be activated. 
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Note that AlsaModularSynth will follow a MIDI controller
only after it has passed the current parameter value. This
„snap­in“ feature is useful to avoid parameter jumps.
It   is  also possible   to  bind  note  events   to parameters.   If
„Enable  note   events“   is  activated,   the  „Control  Center“
will also list note events. The velocity of the note event
defines the parameter value. Due to the „snap­in“ feature
of  MIDI controlled parameters,  it might be necessary to
move the parameter to its leftmost position before it will
follow the note events.
If   „Follow   MIDI“   is   activated,   AlsaModularSynth   will
automatically highlight the MIDI controller that currently
sends input data. If there is a MIDI binding, the respective
parameter will be highlighted as well and a GUI for this
parameter will be created in the lower part of the „Control
Center“. 

 
 Fig. 3: The „Control Center“ of AlsaModularSynth lists

the parameters  of a patch and MIDI controllers.

In addition to the complete parameter list in the „Control
Center“, each module has its own configuration dialog. It
is opened by right­clicking on the module name. Usually
only a subset of these parameters is needed to control the
sound   charateristics   of   a   given   patch.   Parameters   can
therefore be arranged into a „Parameter View“ dialog. 

      
   Fig. 4: The „Parameter View“ dialog is the interface for

  live performance.

Moving a parameter into the „Parameter View“ dialog is
done in the „Control Center“ by first selecting it and then
pressing   „Add   to   Parameter   View“.   Parameters   can   be
grouped   into   tabs   and   named   frames.  It   is   possible   to
change the parameter name according to its function in a
certain patch. 
The parameter settings of   the „Parameter  View“ can be
saved as named presets. These presets can be accessed via
MIDI program change.

4. The function module and expressive velocity patches
To build an expressive instrument, it is interesting to let
the   MIDI  velocity  determine   the   timbre  of   a   sound.  A
convenient  way of  mapping the velocity control  voltage
(CV)   to   up   to   4   independent   CV's   is   offered   by   the
function module. 

     Fig: 5: Arbitrary mapping of a single input CV to 
                 4 output CV's in the function module.

The   typical   subtractive   synthesis   patch   has   a   filter
envelope to control the cutoff frequency of a lowpass filter
over   time.  A   simple   but   effective   way   to   add   velocity
dependend   timbre control   to   such a patch  is   to  let   the
velocity   CV   control   the   amount   of   the   filter   envelope
signal to be sent to the filter cutoff. 
In   a   setup   with   several   VCO's   it   is   also   interesting   to
quantize the velocity CV with a „Quantizer 2“ module and
let it control the octave of the upper VCO. Playing such a
patch in a controlled way is a good excercise for pianists.

5. Additive vs. subractive synthesis
The  most   complex  module  of  AlsaModularSynth   is   the
„Dynamic Waves“  module.  It  features additive synthesis
of up to 8 oscillators. Each oscillator is controlled by an
eight­step   envelope.   Due   to   its   large   number   of
parameters, it is obvious that this kind of synthesis is not
suited   for   realtime   sound   modifications   during   live
playing. 
Subtractive   synthesis   is   much  better   suited   for   realtime
sound   screwing  because   the   amount  of   parameters   that
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define a sound  is  much less  than for  additive synthesis.
Fons  Adriaensen has  written  high  quality  oscillator  and
filter   plugins   [3]   that   can   be   loaded   into
AlsaModularSynth via the „Ladspa Browser“. 

                 
          Fig. 6: The „Ladspa Browser“ lists all
                      available LADSPA plugins.

To   enable  polyphonic  playing,   they  have   to   be   created
with   „Create   Poly  Plugin“.  The  button   „Create  Plugin“
will   create   only   one   single   instance   of   the   plugin.   All
voices will be downmixed for such a plugin.  This mode
should be used for effects and reverb.

  Fig. 7: Scope module (top) with saw wave and filtered  
saw, Spectrum module with saw spectrum 
(bottom, left) and filtered saw (bottom, right).  
The peak caused by the resonance is clearly
visible. 

AlsaModularSynth has „Scope“ and „Spectrum“ modules
that can be used to show how subtractive synthesis works:
The rich spectrum of a e.g. a sawtooth wave is shaped by a

filter.   The   most   famous   of   such   filters   is   the   lowpass
invented  by R.A.  Moog around 1964.   Its  characteristics
are   mainly   defined   by   only   two   parameters:   cutoff
frequency and resonance.
In a typical subtractive synthesis patch we find therefore
only   a   small   number   of   parameters   that   need   to   be
modified to obtain large variations of the sound. Among
these  are   the attack  and  decay  of   the  volume and  filter
envelopes, the amount of the latter that is sent to the filter,
the VCO octave settings, filter cutoff and resonance. All
of these can be either controlled by the note velocity and
aftertouch values or via MIDI controllers.

6. The MIDI Out module
AlsaModularSynth   can   not  only   receive   MIDI  data  but
also   send   it.  The   „MIDI   Out“   module   can   convert   the
internal control voltages of AlsaModularSynth into MIDI
controller, pitchbend or note events. This way you can e.g.
control   your   MIDI   expander   with   a   LFO   of
AlsaModularSynth. 
If the „Trigger“ port is connected, MIDI events are send
whenever   the   trigger   threshold   is   exceeded.   Otherwise
they are sent when a new MIDI value is reached.

 

   Fig. 8: The „MIDI Out“ module offers a flexible 
 conversion of virtual CV's into MIDI controller, 
 pitchbend and note events.
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